Question Number 7300 by Tawakalitu. last updated on 22/Aug/16 $$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \:\:\:\frac{{sinx}}{{sinx}\:+\:{cosx}}\:{dx}\: \\ $$ Answered by Yozzia last updated on 22/Aug/16 $${I}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{sinx}}{{sinx}+{cosx}}{dx} \\…
Question Number 72813 by Learner-123 last updated on 03/Nov/19 $${Find}\:{the}\:{area}\:{of}\:{the}\:{region}\:{enclosed} \\ $$$${by}\:{the}\:{line}\:\mathrm{5}{y}={x}+\mathrm{6}\:{and}\:{the}\:{curve} \\ $$$${y}=\sqrt{\mid{x}\mid}\:. \\ $$ Commented by ajfour last updated on 03/Nov/19 Commented by…
Question Number 72796 by Learner-123 last updated on 03/Nov/19 $${Integrate}\:{f}\left({x},{y}\right)=\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{over} \\ $$$${the}\:{triangle}\:{with}\:{vertices}\:\left(\mathrm{0},\mathrm{0}\right)\:,\left(\mathrm{1},\mathrm{0}\right), \\ $$$$\left(\mathrm{1},\sqrt{\mathrm{3}}\right)\:{after}\:{changing}\:{it}\:{to}\:{polar}\:{form}. \\ $$ Answered by mind is power last…
Question Number 72789 by Learner-123 last updated on 02/Nov/19 $${Find}\:{the}\:{area}\:{of}\:{the}\:{surface}\:{generated} \\ $$$${by}\:{revolving}\:{the}\:{curve}\:{x}=\frac{{y}^{\mathrm{4}} }{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}{y}^{\mathrm{2}} }\: \\ $$$${about}\:{the}\:{x}−{axis}\:.\:\left({given}:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\right) \\ $$ Commented by MJS last updated on 02/Nov/19…
Question Number 138296 by bobhans last updated on 12/Apr/21 $$\int\:\frac{{dx}}{{x}^{\mathrm{4}} \sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }}\:=? \\ $$ Answered by bemath last updated on 12/Apr/21 Answered by mathmax…
Question Number 138283 by mnjuly1970 last updated on 11/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:……{advanced}\:\:\:………..\:\:{calculus}…… \\ $$$$\:\:{prove}\:{that}:: \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right).{arctan}\left({x}\right)}{{x}^{\mathrm{2}} }{dx}= \\ $$$$\:{proof}::: \\ $$$$\:\:\:\boldsymbol{\phi}\underset{\langle{substitution}\rangle} {\overset{{x}={tan}\left(\theta\right)} {=}}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}}…
Question Number 138277 by mathmax by abdo last updated on 11/Apr/21 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} } \mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)\mathrm{dxdy} \\ $$ Answered by…
Question Number 138276 by mathmax by abdo last updated on 11/Apr/21 $$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{A}_{\mathrm{n}} =\int\int_{\left[\mathrm{0},\mathrm{n}\left[^{\mathrm{2}} \right.\right.} \:\:\:\frac{\mathrm{dxdy}}{\left(\mathrm{2x}^{\mathrm{2}} \:+\mathrm{3y}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\mathrm{find}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{A}_{\mathrm{n}} \\ $$ Terms of…
Question Number 138275 by mathmax by abdo last updated on 11/Apr/21 $$\left.\mathrm{1}\right)\mathrm{calculate}\:\mathrm{U}_{\mathrm{n}} =\int\int_{\left[\frac{\mathrm{1}}{\mathrm{n}},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\left(\mathrm{2x}+\mathrm{3y}\right)\sqrt{\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} }\mathrm{dxdy} \\ $$$$\left.\mathrm{2}\right)\mathrm{find}\:\int\int_{\left.\right]\left.\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \left(\mathrm{2x}+\mathrm{3y}\right)\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\mathrm{dxdy} \\ $$…
Question Number 138257 by greg_ed last updated on 11/Apr/21 $$\boldsymbol{\mathrm{hi}}\:! \\ $$$$\boldsymbol{\mathrm{calculate}}\::\: \\ $$$$\int\int_{\mathrm{A}} \left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dxdy}\:{with}\:\mathrm{A}=\left\{\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:+\:\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:\leqslant\:\mathrm{1}\right\} \\ $$ Answered by…