Question Number 7006 by Tawakalitu. last updated on 05/Aug/16 $$\int\:\frac{\mathrm{2}{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}\:−\:{x}^{\mathrm{4}} }}\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 138065 by mnjuly1970 last updated on 09/Apr/21 $$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:…{nice}\:…\:…\:…\:{calculus}… \\ $$$$\:\:\:\:\:\:\:{prove}:: \\ $$$$\:\:\:\:\:\:\:\:\:\Omega=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\zeta\left(\mathrm{2}{n}+\mathrm{1}\right)−\mathrm{1}}{{n}+\mathrm{1}}\:=−\gamma+{log}\left(\mathrm{2}\right) \\ $$ Answered by Ñï= last updated…
Question Number 6983 by FilupSmith last updated on 04/Aug/16 $${I}=\int_{\mathrm{0}} ^{\:{a}} \left(\mathrm{1}+\frac{{n}}{{x}}\right)^{{x}} {dx} \\ $$$${I}=? \\ $$ Commented by FilupSmith last updated on 04/Aug/16 $$\mathrm{Current}\:\mathrm{working}…
Question Number 138041 by mnjuly1970 last updated on 09/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:…….{advanced}\:…\:…\:…\:{calculus}…… \\ $$$$\:\:{prove}\:\:{that}\:::: \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \psi\left({x}\right).{sin}\left(\mathrm{2}\pi{x}\right){dx}=−\frac{\pi}{\mathrm{2}}\:…\checkmark \\ $$$$ \\ $$ Answered by Dwaipayan Shikari last…
Question Number 6972 by Tawakalitu. last updated on 03/Aug/16 $${Evaluate}\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:{dx}\:\underset{\mathrm{0}} {\overset{{x}} {\int}}\:{e}^{\frac{{y}}{{x}}} \:{dy} \\ $$ Answered by FilupSmith last updated on 03/Aug/16 $$=\mathrm{1}\left(\frac{\mathrm{1}}{{x}}\left[{e}^{{y}/{x}}…
Question Number 6979 by Fitrah A last updated on 04/Aug/16 $$\underset{\mathrm{0}} {\overset{\pi} {\int}}\left({sin}\:\mathrm{3}{x}\:+\:{cos}\:{x}\right)\:{dx}\:=\:? \\ $$ Answered by sandy_suhendra last updated on 04/Aug/16 $$=\left[−\frac{\mathrm{1}}{\mathrm{3}}{cos}\:\mathrm{3}{x}\:+\:{sin}\:{x}\right]_{\mathrm{0}} ^{\pi} \\…
Question Number 6971 by Tawakalitu. last updated on 03/Aug/16 $${Evaluate}\:\:\int\left({x}\:+\:\mathrm{3}{y}\right)\:{dx} \\ $$$${from}\:\left(\mathrm{0},\mathrm{1}\right)\:{to}\:\left(\mathrm{2},\mathrm{5}\right)\:{along}\:{the}\:{curve}\:\:{y}\:=\:\mathrm{1}\:+\:{x}^{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 6970 by Tawakalitu. last updated on 03/Aug/16 $${Integrate}\:\:{dz}\:=\:\left(\mathrm{8}{e}^{\mathrm{4}{x}} \:+\:\mathrm{2}{xy}^{\mathrm{2}} \right)\:{dx}\:+\:\left(\mathrm{4}{cos}\:\mathrm{4}{y}\:\:−\:\mathrm{2}{xy}\right)\:{dy} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 72494 by aliesam last updated on 29/Oct/19 $$\frac{\int{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{5}}\:{dx}−\mathrm{3}\int\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{5}}}{dx}}{\int\frac{{x}\left({x}^{\mathrm{2}} +\mathrm{2}\right)}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{5}}}\:{dx}} \\ $$ Commented by mathmax by abdo last updated on 29/Oct/19…
Question Number 6959 by Tawakalitu. last updated on 03/Aug/16 $$\int\:{x}\:\left({x}\:+\:\mathrm{2}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \:{dx}\: \\ $$ Answered by FilupSmith last updated on 03/Aug/16 $${u}={x}+\mathrm{2} \\ $$$${x}={u}−\mathrm{2} \\ $$$${du}={dx}…