Question Number 138128 by mathmax by abdo last updated on 10/Apr/21 $$\mathrm{calculate}\:\int\:\:\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{2}−\mathrm{x}^{\mathrm{2}} }+\sqrt{\mathrm{3}+\mathrm{x}^{\mathrm{2}} }} \\ $$ Answered by MJS_new last updated on 10/Apr/21 $$\int\frac{{dx}}{\:\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }+\sqrt{\mathrm{3}+{x}^{\mathrm{2}}…
Question Number 138129 by mathmax by abdo last updated on 10/Apr/21 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{2}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{3}}\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 138131 by mathmax by abdo last updated on 10/Apr/21 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{dx}}{\left(\mathrm{2x}+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$ Answered by MJS_new last updated on 10/Apr/21…
Question Number 138114 by mnjuly1970 last updated on 10/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:……\:{calculus}…..\left({III}\right)…… \\ $$$$\:\:\:\:\:\:\:\:\:{evaluate}::\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}\overset{???} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\:{x}} \frac{{cos}\left({y}\right)}{\:\sqrt{\left(\frac{\pi}{\mathrm{2}}−{x}\right)\left(\frac{\pi}{\mathrm{2}}−{y}\right)}}{dydx} \\ $$$$ \\ $$ Commented by…
Question Number 7030 by Tawakalitu. last updated on 07/Aug/16 $$\int\:\frac{\mathrm{2}{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}\:−\:{x}^{\mathrm{4}} }}\:{dx}\: \\ $$ Answered by uchechukwu okorie favour last updated on 10/Aug/16 $${let}\:{u}=\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }…
Question Number 7026 by Tawakalitu. last updated on 07/Aug/16 Commented by Yozzii last updated on 07/Aug/16 $${Write}\:\int\frac{{sinx}+{cosx}}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx}=\int\frac{{sinx}}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx}+\int\frac{{cosx}}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx}. \\ $$$${Evaluate}\:{each}\:{integral}\:{by}\:{the}\:{following}\:{steps}…
Question Number 7017 by Tawakalitu. last updated on 06/Aug/16 $$\int\:\frac{\mathrm{2}{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}\:−\:{x}^{\mathrm{4}} }}\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 138086 by EnterUsername last updated on 10/Apr/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{sin}\theta\right)}{\pi^{\mathrm{2}} +\mathrm{ln}^{\mathrm{2}} \left(\mathrm{sin}\theta\right)}\right)\:\frac{\mathrm{ln}\left(\mathrm{cos}\theta\right)}{\mathrm{tan}\theta}\mathrm{d}\theta \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 7006 by Tawakalitu. last updated on 05/Aug/16 $$\int\:\frac{\mathrm{2}{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}\:−\:{x}^{\mathrm{4}} }}\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 138065 by mnjuly1970 last updated on 09/Apr/21 $$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:…{nice}\:…\:…\:…\:{calculus}… \\ $$$$\:\:\:\:\:\:\:{prove}:: \\ $$$$\:\:\:\:\:\:\:\:\:\Omega=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\zeta\left(\mathrm{2}{n}+\mathrm{1}\right)−\mathrm{1}}{{n}+\mathrm{1}}\:=−\gamma+{log}\left(\mathrm{2}\right) \\ $$ Answered by Ñï= last updated…