Question Number 137940 by benjo_mathlover last updated on 08/Apr/21 $$\int_{\mathrm{1}} ^{\:{e}} \sqrt{\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}\:} }}\:{dx}\:=? \\ $$ Answered by john_santu last updated on 08/Apr/21 $$\mathcal{J}\:=\:\int_{\mathrm{1}} ^{\:{e}}…
Question Number 137937 by benjo_mathlover last updated on 08/Apr/21 $$\:\underset{−\infty} {\overset{\:\:\:\infty} {\int}}\frac{\mathrm{ln}\left(\:\mid{x}\mid\right)}{\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:=? \\ $$ Answered by Ñï= last updated on 14/Apr/21 $$\int_{−\infty}…
Question Number 6865 by Tawakalitu. last updated on 31/Jul/16 $$\int\frac{{sin}\left({x}\right)\:+\:{cos}\left({x}\right)}{{e}^{−{x}} \:+\:{sin}\left({x}\right)}\:{dx} \\ $$ Commented by Yozzii last updated on 31/Jul/16 $${sinhix}={isinx} \\ $$$${sinx}=\frac{{sinhix}}{{i}}=\frac{{e}^{{ix}} −{e}^{−{ix}} }{\mathrm{2}{i}}…
Question Number 72401 by Learner-123 last updated on 28/Oct/19 $${Find}\:{the}\:{area}\:{bounded}\:{by}\:{one}\:{leaf}\:{of} \\ $$$${the}\:{rose}\:{r}\:=\:\mathrm{12cos}\:\left(\mathrm{3}\theta\right). \\ $$ Answered by ajfour last updated on 28/Oct/19 Commented by ajfour last…
Question Number 72396 by mathmax by abdo last updated on 28/Oct/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}+{x}^{\mathrm{2}} }{\mathrm{2}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }{dx} \\ $$ Commented by mathmax by abdo last…
Question Number 137933 by mnjuly1970 last updated on 08/Apr/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 72397 by mathmax by abdo last updated on 28/Oct/19 $${find}\:{A}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}−{xsin}^{\mathrm{2}} \theta\right){d}\theta\:\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 137930 by mnjuly1970 last updated on 08/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:…..{nice}\:\:…\:…\:{calculus}….. \\ $$$$\:\:\:\:\:{calculation}\:{of}::: \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{2}} ^{\:\mathrm{6}} \:\frac{\mathrm{1}+\left(\sqrt[{\mathrm{3}}]{\left({x}−\mathrm{2}\right)\left({x}−\mathrm{4}\right)\left({x}−\mathrm{6}\right)}\:\right){cos}^{\mathrm{2021}} \left(\pi{x}\right)}{{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{20}}{dx}=? \\ $$$$\:\:\:\:\:{solution}:: \\ $$$$\:\:\:\:\:{x}−\mathrm{4}={t}\:\Rightarrow\left\{_{\:{x}=\mathrm{6}\:\Rightarrow\:{t}=\mathrm{2}} ^{{x}=\mathrm{2}\:\Rightarrow{t}=−\mathrm{2}} \right. \\…
Question Number 72392 by mathmax by abdo last updated on 28/Oct/19 $${calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{−{nx}} {ln}\left(\mathrm{1}+{x}\right){dx}\:\:{with}\:{n}\:{natural}\:\geqslant\mathrm{1} \\ $$ Commented by mathmax by abdo last updated…
Question Number 72390 by mathmax by abdo last updated on 28/Oct/19 $${calculate}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{1}+{x}^{\mathrm{4}} \right)}{\left({x}^{\mathrm{2}} \:+{n}^{\mathrm{2}} \right)^{\mathrm{3}} }{dx} \\ $$$${and}\:{determine}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$ Commented by…