Question Number 137829 by mnjuly1970 last updated on 07/Apr/21 $$\:\:\:\:\:…….{nice}\:\:…\:…\:….\:{calculus}….. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{prove}\:{that}\::::: \\ $$$$\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{log}\left(\mathrm{1}−{x}\right)}{{x}}\right)^{\mathrm{2}} {dx}=\mathrm{2}\zeta\left(\mathrm{2}\right)…. \\ $$$$ \\ $$ Answered by EnterUsername last…
Question Number 72286 by Best last updated on 27/Oct/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 6748 by Leila Akram last updated on 21/Jul/16 Answered by Yozzii last updated on 21/Jul/16 $${I}=\int_{−\mathrm{1}} ^{\mathrm{0}} {t}\sqrt{{t}+\mathrm{2}}{dx} \\ $$$${u}={t}+\mathrm{2}\Rightarrow{du}={dt} \\ $$$${t}={u}−\mathrm{2} \\…
Question Number 72287 by Best last updated on 27/Oct/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 6746 by Tawakalitu. last updated on 20/Jul/16 $${Evaluate}\: \\ $$$$ \\ $$$${I}\:=\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\int_{\mathrm{2}} ^{\mathrm{4}} \:\:\:\left({x}\:+\:\mathrm{2}{y}\right)\:\:{dx}\:{dy}\: \\ $$ Answered by FilupSmith last updated…
Question Number 6737 by FilupSmith last updated on 19/Jul/16 $$\mathrm{If}\:{z}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{function}, \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{following}\:\mathrm{true}: \\ $$$$\int{zdx}=\int\Re\left({z}\right){dx}+{i}\int\Im\left({z}\right){dx} \\ $$ Commented by prakash jain last updated on 19/Jul/16 $$\mathrm{Yes}.\:\mathrm{Since}\:{i}\:\mathrm{is}\:\mathrm{simply}\:\mathrm{a}\:\mathrm{constant}.…
Question Number 137799 by mnjuly1970 last updated on 06/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:…..\:{mathematical}\:..\:…\:…\:{analysis}…. \\ $$$$\:\:\:\:\:\:\:{evaluate}\:::\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}}\right)=? \\ $$$$ \\ $$ Answered…
Question Number 72259 by mhmd last updated on 26/Oct/19 $$\int{yz}\:{dx}\:+\int{xz}\:{dy}\:+\int{xy}\:{dz}\:\:\:\:{pleas}\:{sir}\:{help}\:{me}\:? \\ $$ Answered by MJS last updated on 26/Oct/19 $$…={yz}\int{dx}+{xz}\int{dy}+{xy}\int{dz}=\mathrm{3}{xyz} \\ $$$$\mathrm{all}\:\mathrm{variables}\:\neq\:\mathrm{the}\:\mathrm{integral}\:\mathrm{variable}\:\mathrm{are} \\ $$$$\mathrm{considered}\:\mathrm{as}\:\mathrm{constant}\:\mathrm{factors} \\…
Question Number 6710 by Tawakalitu. last updated on 15/Jul/16 $$\int\:\frac{{dx}}{{sinx}\:+\:{sin}\mathrm{2}{x}}\:{dx} \\ $$ Answered by Yozzii last updated on 15/Jul/16 $${I}=\int\frac{{dx}}{{sinx}+{sin}\mathrm{2}{x}}=\int\frac{{sinx}}{{sin}^{\mathrm{2}} {x}\left(\mathrm{1}+\mathrm{2}{cosx}\right)}{dx} \\ $$$${I}=\int\frac{−{sinx}}{−\left(\mathrm{1}−{cos}^{\mathrm{2}} {x}\right)\left(\mathrm{1}+\mathrm{2}{cosx}\right)}{dx} \\…
Question Number 6709 by Tawakalitu. last updated on 15/Jul/16 $$\int_{\mathrm{3}} ^{\mathrm{6}} \:\:\frac{\mathrm{22}\:−\:\mathrm{5}{x}^{\mathrm{3}} \:−\:\mathrm{5}{x}^{\mathrm{4}} }{\left({x}\:−\:\mathrm{1}\right)\left({x}\:+\:\mathrm{2}\right)}\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com