Menu Close

Category: Integration

Question-137770

Question Number 137770 by peter frank last updated on 06/Apr/21 Answered by Ñï= last updated on 06/Apr/21 $${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {da}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}}{\left(\mathrm{1}+{ax}\right)\left(\mathrm{1}+{x}^{\mathrm{2}}…

Question-137717

Question Number 137717 by mnjuly1970 last updated on 05/Apr/21 Commented by Dwaipayan Shikari last updated on 05/Apr/21 $${f}\left({a}\right)=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{3}−{a}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}−{a}}{\mathrm{2}}\right)\Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}−{a}}{\mathrm{2}}\right)=\frac{\mathrm{1}−{a}}{\mathrm{4}}.\frac{\pi}{{sin}\left(\frac{\pi}{\mathrm{2}}+\frac{\pi}{\mathrm{2}}{a}\right)} \\ $$$$=\frac{\pi}{\mathrm{4}}\left(\mathrm{1}−{a}\right){sec}\left(\frac{\pi}{\mathrm{2}}{a}\right) \\ $$$$−\frac{\mathrm{1}}{\mathrm{3}}{f}'\left(\mathrm{0}\right)=\frac{\pi}{\mathrm{12}} \\ $$ Terms…

let-f-x-x-2-2x-1-find-f-x-f-1-x-dx-and-f-1-x-f-x-dx-

Question Number 137697 by Mathspace last updated on 05/Apr/21 $${let}\:{f}\left({x}\right)={x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1} \\ $$$${find}\:\:\int\:\frac{{f}\left({x}\right)}{{f}^{−\mathrm{1}} \left({x}\right)}{dx}\:{and}\:\int\:\frac{{f}^{−\mathrm{1}} \left({x}\right)}{{f}\left({x}\right)}{dx} \\ $$ Commented by TheSupreme last updated on 07/Apr/21 $${f}^{−\mathrm{1}}…

let-U-n-0-cos-nsinx-sin-ncosx-x-2-3-2-dx-determine-lim-n-U-n-and-lim-n-e-n-2-U-n-

Question Number 137696 by Mathspace last updated on 05/Apr/21 $${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left({nsinx}\right)−{sin}\left({ncosx}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$$${determine}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} \\ $$$${and}\:{lim}_{{n}\rightarrow+\infty} {e}^{−{n}^{\mathrm{2}} } \:{U}_{{n}} \\ $$…

find-2x-1-3-x-x-1-dx-

Question Number 137695 by Mathspace last updated on 05/Apr/21 $${find}\:\:\int\:\:\frac{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{3}} }{\:\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}}{dx} \\ $$ Answered by bemath last updated on 05/Apr/21 $$\:\int\:\frac{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{3}} \left(\sqrt{{x}}−\sqrt{{x}+\mathrm{1}}\:\right)}{{x}−\left({x}+\mathrm{1}\right)}{dx} \\ $$$$=\:\int\:\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{3}} \left(\sqrt{{x}+\mathrm{1}}\:−\sqrt{{x}}\:\right){dx}…