Question Number 6441 by Temp last updated on 27/Jun/16 $$\mathrm{After}\:\mathrm{looking}\:\mathrm{at}\:\mathrm{a}\:\mathrm{previous}\:\mathrm{question} \\ $$$$\mathrm{I}\:\mathrm{was}\:\mathrm{wondering}\:\mathrm{if}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{is}\:\mathrm{correct}: \\ $$$${I}\left({n}\right)=\int_{\mathrm{0}} ^{\:{n}} \left(−\mathrm{1}\right)^{{x}} {dx},\:\:{n}\in\mathbb{R} \\ $$$${I}\left({n}\right)=\int_{\mathrm{0}} ^{\:{n}} {e}^{{i}\pi{x}} {dx}\:\:\:\left(\mathrm{1}\right) \\…
Question Number 6444 by sanusihammed last updated on 27/Jun/16 $${I}\:=\:\int\frac{{dx}}{{sinx}\:+\:{sin}\mathrm{2}{x}} \\ $$ Commented by Temp last updated on 27/Jun/16 $$\mathrm{Try}\:\mathrm{www}.\mathrm{WolframAlpha}.\mathrm{com} \\ $$$$\mathrm{search}: \\ $$$$“{int}\:\mathrm{1}/\left({sin}\left({x}\right)+{sin}\left(\mathrm{2}{x}\right)\right)\:{dx}'' \\…
Question Number 6439 by sanusihammed last updated on 27/Jun/16 $${H}\:=\:\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{4}}} \sqrt{{tanx}}\:{dx}\: \\ $$ Commented by Temp last updated on 27/Jun/16 $$\int\sqrt{\mathrm{tan}{x}}{dx}\:\mathrm{is}\:\mathrm{difficult}\:\mathrm{to}\:\mathrm{solve}. \\ $$ Commented…
Question Number 137509 by liberty last updated on 03/Apr/21 $$\int\:\frac{\mathrm{sin}\:\left(\sqrt{{x}}\:\right)+\mathrm{cos}\:\left(\sqrt{{x}}\:\right)}{\:\sqrt{{x}}\:\mathrm{sin}\:\left(\mathrm{2}\sqrt{{x}}\:\right)}\:{dx}\: \\ $$ Commented by liberty last updated on 04/Apr/21 Answered by Ñï= last updated on…
Question Number 137508 by EDWIN88 last updated on 03/Apr/21 $$\int\:\frac{\mathrm{sin}\:\left(\frac{\mathrm{1}}{{x}}\right)}{{x}^{\mathrm{3}} }\:{dx}\:=? \\ $$ Answered by liberty last updated on 03/Apr/21 $${L}=\int\:\frac{\mathrm{1}}{{x}}\mathrm{sin}\:\left(\frac{\mathrm{1}}{{x}}\right)\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:{dx} \\ $$$${let}\:{t}\:=\:\frac{\mathrm{1}}{{x}}\:\Rightarrow−{dt}\:=\:\frac{{dx}}{{x}^{\mathrm{2}} }…
Question Number 137501 by mnjuly1970 last updated on 03/Apr/21 $$\:\:\:\:\:\:\:….{advanced}\:….\:{calculus}…. \\ $$$$\:\:{prove}\:{that}:: \\ $$$$\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left({x}\right).{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}}{dx}=\frac{\mathrm{13}}{\mathrm{8}}\zeta\left(\mathrm{3}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{4}}{ln}\left(\mathrm{2}\right)…. \\ $$ Answered by Ñï= last updated on…
Question Number 137474 by mnjuly1970 last updated on 03/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..{nice}\:\:……..\:\:{calculus}….. \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\sqrt[{\mathrm{3}}]{{ln}\left(\sqrt{\mathrm{1}−{x}}\right)}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{Im}\left(\boldsymbol{\phi}\right)=??? \\ $$ Answered by mindispower last updated on 03/Apr/21…
Question Number 137461 by mathlove last updated on 03/Apr/21 Answered by Ñï= last updated on 03/Apr/21 $$\int\frac{\mathrm{1}+{x}^{\mathrm{2}} }{\mathrm{2}{x}+{x}^{\mathrm{3}} }{dx}=\frac{\mathrm{1}}{\mathrm{3}}\int\frac{\mathrm{2}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{x}+{x}^{\mathrm{3}} }{dx}=\frac{\mathrm{1}}{\mathrm{3}}{ln}\mid\mathrm{2}{x}+{x}^{\mathrm{3}} \mid+\frac{\mathrm{1}}{\mathrm{3}}\int\frac{{dx}}{{x}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}{ln}\mid\mathrm{2}{x}+{x}^{\mathrm{3}}…
Question Number 137466 by Lordose last updated on 03/Apr/21 $$\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{xtan}^{−\mathrm{1}} \left(\mathrm{x}\right)\mathrm{log}\left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 6390 by FilupSmith last updated on 25/Jun/16 $$\mathrm{Solve}: \\ $$$${I}\left({n}\right)=\int_{\mathrm{0}} ^{\:{n}} \left(−\mathrm{1}\right)^{\lfloor{x}\rfloor} {x}^{\mathrm{2}} {dx} \\ $$ Commented by prakash jain last updated on…