Question Number 70446 by oyemi kemewari last updated on 04/Oct/19 Commented by oyemi kemewari last updated on 04/Oct/19 please help me solve this question Commented by mathmax by abdo last…
Question Number 4900 by prakash jain last updated on 19/Mar/16 $$\int_{{n}} ^{\:{n}+\mathrm{1}} {f}\left({x}\right)\mathrm{d}{x},\:{n}\in\mathbb{N} \\ $$$${where}\:{f}\left({x}\right)=\underset{{i}=\mathrm{0}} {\overset{{n}+\mathrm{1}} {\prod}}\left({x}−{i}\right) \\ $$$$\mathrm{Can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{integrated}\:\mathrm{with}\:\mathrm{evaluating}\:\mathrm{the} \\ $$$$\mathrm{product}? \\ $$ Commented by…
Question Number 135957 by mathmax by abdo last updated on 17/Mar/21 $$\left.\mathrm{1}\right)\:\mathrm{find}\:\int\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{2}\right)\:\mathrm{deduce}\:\mathrm{the}\:\mathrm{decomposition}\:\mathrm{of}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{4}} } \\ $$ Answered by Dwaipayan Shikari last…
Question Number 70425 by ahmadshahhimat775@gmail.com last updated on 04/Oct/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 70418 by oyemi kemewari last updated on 04/Oct/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 135932 by Engr_Jidda last updated on 17/Mar/21 $${Evaluate}\:\left(\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{{x}} \int_{\mathrm{0}} ^{{y}} \left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} −\mathrm{3}{z}^{\mathrm{2}} \right){dxdydz} \\ $$$$\left(\mathrm{2}\right)\:\int\left(\mathrm{2}{x}−\mathrm{2}\right)^{\mathrm{3}} {dx} \\ $$$$\left(\mathrm{3}\right)\:\int\left(\frac{{x}−\mathrm{5}}{{x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{2}}\right){dx}…
Question Number 70369 by ahmadshahhimat775@gmail.com last updated on 03/Oct/19 Commented by MJS last updated on 03/Oct/19 $$\mathrm{see}\:\mathrm{question}\:\mathrm{69588} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 70361 by mind is power last updated on 03/Oct/19 $${Hello}\: \\ $$$${si}\left({x}\right)=−\int_{{x}} ^{\infty} \frac{{sin}\left({x}\right)}{{x}}{dx} \\ $$$${show}\:\int_{\mathrm{0}} ^{+\infty} {x}^{{a}−\mathrm{1}} {si}\left({x}\right){dx}=−\frac{\Gamma\left({a}\right){sin}\left(\frac{\pi{a}}{\mathrm{2}}\right)}{{a}} \\ $$$${hint}\:{ipp}\:+{complex}\:{Analysis} \\ $$…
Question Number 135888 by mnjuly1970 last updated on 16/Mar/21 Answered by mindispower last updated on 19/Mar/21 $${recal}\:\chi_{\mathrm{2}} \left({x}\right)=\frac{{li}_{\mathrm{2}} \left({x}\right)−{li}_{\mathrm{2}} \left(−{x}\right)}{\mathrm{2}},{chi}\:{function} \\ $$$${we}\:{have}\:\chi_{\mathrm{2}} \left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\right)+\chi_{\mathrm{2}} \left({x}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}+\frac{{ln}\left({x}\right){ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)}{\mathrm{2}}…
Question Number 135872 by Engr_Jidda last updated on 16/Mar/21 $${Evaluate}\:\oint_{{c}} {ydy}\:{where}\:\:{c}\:{is}\:{a}\:{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4} \\ $$ Answered by mathmax by abdo last updated on 16/Mar/21 $$\mathrm{y}\:=\xi\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}}…