Question Number 135693 by liberty last updated on 15/Mar/21 $$\Omega\:=\:\int\:\frac{{x}−\mathrm{1}}{\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}\right)^{\mathrm{2}} }\:{dx}\: \\ $$ Answered by MJS_new last updated on 15/Mar/21 $$\int\frac{{x}−\mathrm{1}}{\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}\right)^{\mathrm{2}} }{dx}= \\…
Question Number 70150 by necxxx last updated on 01/Oct/19 $${prove}\:{that}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\left(\mathrm{4}−{sin}^{\mathrm{2}} {x}\right)}{dx}\:<\:\frac{\pi\sqrt{\mathrm{14}}}{\mathrm{4}} \\ $$ Commented by necxxx last updated on 01/Oct/19 $${please}\:{help} \\ $$…
Question Number 135673 by liberty last updated on 14/Mar/21 $$\int\:\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}}\:{dx}\: \\ $$ Answered by Olaf last updated on 15/Mar/21 $$\Omega\:=\:\int\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}^{\mathrm{4}} +{x}^{\mathrm{2}}…
Question Number 135662 by BHOOPENDRA last updated on 14/Mar/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 4575 by FilupSmith last updated on 08/Feb/16 $$\int_{{a}} ^{\:\infty} \frac{\mathrm{1}}{{x}}{dx}=\infty \\ $$$$ \\ $$$$\int_{{a}} ^{\:\infty} \lfloor\frac{\mathrm{1}}{{x}}\rfloor{dx}={S} \\ $$$${a}>\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Is}\:{S}\:\mathrm{finite}?\:\mathrm{Can}\:\mathrm{you}\:\mathrm{solve}\:\mathrm{for}\:{S}? \\…
Question Number 135646 by metamorfose last updated on 14/Mar/21 $$\int\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right){ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)−{x}\:{dx}=…? \\ $$ Answered by Ñï= last updated on 15/Mar/21 $$\int\left[\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right){ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)−{x}\right]{dx} \\ $$$$=\int\left[\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)\left({ln}\left({x}+\mathrm{1}\right)−{lnx}\right)−{x}\right]{dx} \\ $$$$=\int\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right){ln}\left({x}+\mathrm{1}\right){dx}−\int\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right){lnxdx}−\int{xdx} \\…
Question Number 135633 by metamorfose last updated on 14/Mar/21 $$\int\frac{\mathrm{1}}{{x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}}{dx}=…? \\ $$ Answered by Ñï= last updated on 14/Mar/21 $$\int\frac{{dx}}{{x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}}\overset{{t}={x}^{\frac{\mathrm{1}}{\mathrm{3}}} } {=}\int\frac{\mathrm{3}{t}^{\mathrm{2}} {dt}}{{t}+\mathrm{1}}=\mathrm{3}\int\frac{\left({t}+\mathrm{1}\right)\left({t}−\mathrm{1}\right)+\mathrm{1}}{{t}+\mathrm{1}}{dt}=\mathrm{3}\int\left\{\left({t}−\mathrm{1}\right)+\frac{\mathrm{1}}{{t}+\mathrm{1}}\right\}{dt}…
Question Number 135627 by mnjuly1970 last updated on 14/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{nice}\:……………..\:{calculus}\:… \\ $$$$\:\:\:\:\:\:\:{evaluation}:::::\:\:\:\boldsymbol{\phi}\overset{???} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}\left({x}\right){ln}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:\:\:{solution}::::: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}\overset{\langle{cos}\left({x}\right)={y}\rangle} {=}\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\mathrm{1}−{y}^{\mathrm{2}} \right){dy} \\ $$$$\:\:\:\:\:\:\:\:\:\:=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}}…
Question Number 135614 by BHOOPENDRA last updated on 14/Mar/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 4535 by FilupSmith last updated on 05/Feb/16 $$\mathrm{Lets}\:\mathrm{say}\:\mathrm{we}\:\mathrm{have}\:\mathrm{three}\:\mathrm{points}: \\ $$$${A}\left(\mathrm{0},\:\mathrm{0}\right) \\ $$$${B}\left({x},\:{y}\right) \\ $$$${C}\left(\delta{x},\:\delta{y}\right) \\ $$$$ \\ $$$$\mathrm{Assuming}\:\mathrm{that}\:\mathrm{both}\:{B}\:\mathrm{and}\:{C}\:\mathrm{are}\:\mathrm{point} \\ $$$$\mathrm{on}\:\mathrm{a}\:\mathrm{fuction}\:{y}={f}\left({x}\right),\:\mathrm{we}\:\mathrm{can}\:\mathrm{calculate} \\ $$$$\mathrm{the}\:\mathrm{area}\:\mathrm{under}\:\mathrm{the}\:\mathrm{point}\:\mathrm{where}\:\mathrm{it}\:\mathrm{makes} \\…