Menu Close

Category: Integration

x-1-x-2-x-2-2x-2-2-dx-

Question Number 135693 by liberty last updated on 15/Mar/21 $$\Omega\:=\:\int\:\frac{{x}−\mathrm{1}}{\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}\right)^{\mathrm{2}} }\:{dx}\: \\ $$ Answered by MJS_new last updated on 15/Mar/21 $$\int\frac{{x}−\mathrm{1}}{\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}\right)^{\mathrm{2}} }{dx}= \\…

x-1-2-ln-1-1-x-x-dx-

Question Number 135646 by metamorfose last updated on 14/Mar/21 $$\int\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right){ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)−{x}\:{dx}=…? \\ $$ Answered by Ñï= last updated on 15/Mar/21 $$\int\left[\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right){ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)−{x}\right]{dx} \\ $$$$=\int\left[\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)\left({ln}\left({x}+\mathrm{1}\right)−{lnx}\right)−{x}\right]{dx} \\ $$$$=\int\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right){ln}\left({x}+\mathrm{1}\right){dx}−\int\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right){lnxdx}−\int{xdx} \\…

1-x-1-3-1-dx-

Question Number 135633 by metamorfose last updated on 14/Mar/21 $$\int\frac{\mathrm{1}}{{x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}}{dx}=…? \\ $$ Answered by Ñï= last updated on 14/Mar/21 $$\int\frac{{dx}}{{x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}}\overset{{t}={x}^{\frac{\mathrm{1}}{\mathrm{3}}} } {=}\int\frac{\mathrm{3}{t}^{\mathrm{2}} {dt}}{{t}+\mathrm{1}}=\mathrm{3}\int\frac{\left({t}+\mathrm{1}\right)\left({t}−\mathrm{1}\right)+\mathrm{1}}{{t}+\mathrm{1}}{dt}=\mathrm{3}\int\left\{\left({t}−\mathrm{1}\right)+\frac{\mathrm{1}}{{t}+\mathrm{1}}\right\}{dt}…

nice-calculus-evaluation-0-pi-2-sin-x-ln-sin-x-dx-solution-cos-x-y-1-2-0-1-ln-1-y-2-dy-

Question Number 135627 by mnjuly1970 last updated on 14/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{nice}\:……………..\:{calculus}\:… \\ $$$$\:\:\:\:\:\:\:{evaluation}:::::\:\:\:\boldsymbol{\phi}\overset{???} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}\left({x}\right){ln}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:\:\:{solution}::::: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}\overset{\langle{cos}\left({x}\right)={y}\rangle} {=}\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\mathrm{1}−{y}^{\mathrm{2}} \right){dy} \\ $$$$\:\:\:\:\:\:\:\:\:\:=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}}…

Lets-say-we-have-three-points-A-0-0-B-x-y-C-x-y-Assuming-that-both-B-and-C-are-point-on-a-fuction-y-f-x-we-can-calculate-the-area-under-the-point-where-it-makes-a-right-triangle-with-the-o

Question Number 4535 by FilupSmith last updated on 05/Feb/16 $$\mathrm{Lets}\:\mathrm{say}\:\mathrm{we}\:\mathrm{have}\:\mathrm{three}\:\mathrm{points}: \\ $$$${A}\left(\mathrm{0},\:\mathrm{0}\right) \\ $$$${B}\left({x},\:{y}\right) \\ $$$${C}\left(\delta{x},\:\delta{y}\right) \\ $$$$ \\ $$$$\mathrm{Assuming}\:\mathrm{that}\:\mathrm{both}\:{B}\:\mathrm{and}\:{C}\:\mathrm{are}\:\mathrm{point} \\ $$$$\mathrm{on}\:\mathrm{a}\:\mathrm{fuction}\:{y}={f}\left({x}\right),\:\mathrm{we}\:\mathrm{can}\:\mathrm{calculate} \\ $$$$\mathrm{the}\:\mathrm{area}\:\mathrm{under}\:\mathrm{the}\:\mathrm{point}\:\mathrm{where}\:\mathrm{it}\:\mathrm{makes} \\…