Menu Close

Category: Integration

x-4-2-1-x-6-2-dx-

Question Number 133291 by liberty last updated on 21/Feb/21 $$\:\int\:\frac{\left(\mathrm{x}^{\mathrm{4}} \right)^{\mathrm{2}} }{\left(\mathrm{1}+\mathrm{x}^{\mathrm{6}} \right)^{\mathrm{2}} }\:\mathrm{dx}\:=? \\ $$ Answered by EDWIN88 last updated on 21/Feb/21 $$\mathrm{integration}\:\mathrm{by}\:\mathrm{parts} \\…

let-f-x-0-sin-t-2-x-2-t-2-2-dt-with-x-gt-0-1-determine-a-explicit-form-for-f-x-2-find-also-g-x-0-sin-t-2-x-2-t-2-3-dt-3-give-f-n-x-at-form-of-int

Question Number 67744 by mathmax by abdo last updated on 31/Aug/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({t}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right){determine}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{also}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({t}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}}…

Let-J-0-f-x-x-1-2-dx-where-f-is-any-function-for-which-the-integral-exists-Show-that-J-0-x-2-f-x-x-1-2-dx-0-5-0-1-x-2-f-x-x-1-2-dx-0-f-u-2-du-

Question Number 2186 by Yozzi last updated on 07/Nov/15 $${Let}\:{J}=\int_{\mathrm{0}} ^{\infty} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx}\:{where}\:{f}\:{is} \\ $$$${any}\:{function}\:{for}\:{which}\:{the}\:{integral} \\ $$$${exists}.\:{Show}\:{that} \\ $$$${J}=\int_{\mathrm{0}} ^{\infty} {x}^{−\mathrm{2}} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx}=\mathrm{0}.\mathrm{5}\int_{\mathrm{0}}…

Is-it-possible-to-integrate-the-following-sin-cos-d-

Question Number 2176 by Filup last updated on 06/Nov/15 $$\mathrm{Is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{integrate}\:\mathrm{the}\:\mathrm{following}: \\ $$$$ \\ $$$$\int\mathrm{sin}\left(\mathrm{cos}\:\theta\right){d}\theta \\ $$ Commented by 123456 last updated on 07/Nov/15 $$\mathrm{i}\:\mathrm{dont}\:\mathrm{know}\:\mathrm{if}\:\mathrm{it}\:\mathrm{help}\:\mathrm{but} \\…

advanced-calculus-prove-that-n-0-n-1-2-n-1-2-2-n-n-2pi-ln-2-

Question Number 133228 by mnjuly1970 last updated on 20/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….{advanced}\:\:\:\:{calculus}…. \\ $$$$\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\psi\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}^{{n}} .{n}!}=−\sqrt{\mathrm{2}\pi}\:\left(\gamma+{ln}\left(\mathrm{2}\right)\right)…. \\ $$$$ \\ $$ Answered by Dwaipayan Shikari…