Menu Close

Category: Integration

Calculate-I-a-b-0-1-t-a-1-t-b-dt-given-that-I-a-b-b-a-1-I-a-1-b-1-a-gt-0-b-gt-0-Use-the-fact-that-I-a-b-I-a-1-b-I-a-b-1-and-I-a-b-I-b-a-to-help-evaluate-I-a-b-

Question Number 1643 by 112358 last updated on 28/Aug/15 $${Calculate}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{I}\left({a},{b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{a}} \left(\mathrm{1}−{t}\right)^{{b}} {dt} \\ $$$${given}\:{that}\:{I}\left({a},{b}\right)=\frac{{b}}{{a}+\mathrm{1}}{I}\left({a}+\mathrm{1},{b}−\mathrm{1}\right) \\ $$$$\left({a}>\mathrm{0},{b}>\mathrm{0}\right).\:{Use}\:{the}\:{fact}\:{that} \\ $$$${I}\left({a},{b}\right)={I}\left({a}+\mathrm{1},{b}\right)+{I}\left({a},{b}+\mathrm{1}\right) \\ $$$${and}\:{I}\left({a},{b}\right)={I}\left({b},{a}\right)\: \\…

I-dx-x-x-2-1-3-

Question Number 132693 by liberty last updated on 15/Feb/21 $$\mathrm{I}=\int\:\frac{{dx}}{{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }\: \\ $$ Answered by EDWIN88 last updated on 15/Feb/21 $$\mathrm{Ostrogradsky}\:\mathrm{again} \\ $$$$\int\:\frac{{dx}}{{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}}…