Menu Close

Category: Integration

0-1-1-x-x-2-x-3-dx-

Question Number 66740 by behi83417@gmail.com last updated on 19/Aug/19 $$\underset{\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\mathrm{1}} {\int}}\sqrt{\mathrm{1}−\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:}\:\:\boldsymbol{\mathrm{dx}}=? \\ $$ Commented by mathmax by abdo last updated on 21/Aug/19…

let-f-a-dx-x-4-x-2-a-with-a-1-4-1-calculate-f-a-2-find-also-g-a-dx-x-4-x-2-a-2-3-find-the-value-of-integrals-0-dx-x-4-x-2-3-

Question Number 66694 by mathmax by abdo last updated on 18/Aug/19 $$\left.{let}\:{f}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{4}} +{x}^{\mathrm{2}} \:+{a}\right)}\:{with}\:{a}\in\right]\frac{\mathrm{1}}{\mathrm{4}},+\infty\left[\right. \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{also}\:{g}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\frac{{dx}}{\left({x}^{\mathrm{4}} \:+{x}^{\mathrm{2}} +{a}\right)^{\mathrm{2}} }…

dx-csc-x-sec-x-

Question Number 132192 by benjo_mathlover last updated on 12/Feb/21 $$\:\int\:\frac{\mathrm{dx}}{\mathrm{csc}\:\mathrm{x}\:+\:\mathrm{sec}\:\mathrm{x}} \\ $$ Answered by Dwaipayan Shikari last updated on 12/Feb/21 $$\int\frac{{sinx}\:{cosx}}{{sinx}+{cosx}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int{sinx}+{cosx}−\frac{\mathrm{1}}{{sinx}+{cosx}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({sinx}−{cosx}\right)−\int\frac{{dt}}{\mathrm{1}−{t}^{\mathrm{2}}…

lets-f-0-1-R-given-by-f-x-x-x-Q-1-x-x-Q-is-f-continuos-at-x-1-2-is-0-1-fdx-riemann-integrable-is-0-1-fdx-lebesgue-integable-

Question Number 1124 by 123456 last updated on 17/Jun/15 $$\mathrm{lets}\:{f}:\left[\mathrm{0},\mathrm{1}\right]\rightarrow\mathbb{R}\:\mathrm{given}\:\mathrm{by} \\ $$$${f}\left({x}\right)=\begin{cases}{{x}}&{{x}\in\mathbb{Q}}\\{\mathrm{1}−{x}}&{{x}\notin\mathbb{Q}}\end{cases} \\ $$$$\mathrm{is}\:{f}\:\mathrm{continuos}\:\mathrm{at}\:{x}=\mathrm{1}/\mathrm{2}? \\ $$$$\mathrm{is}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{fdx}\:\mathrm{riemann}\:\mathrm{integrable}? \\ $$$$\mathrm{is}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{fdx}\:\mathrm{lebesgue}\:\mathrm{integable}? \\ $$ Commented…