Menu Close

Category: Integration

find-f-0-arctan-1-x-4-x-2-dx-gt-0-and-determine-the-value-of-0-arctan-1-2x-x-2-4-dx-

Question Number 130532 by mathmax by abdo last updated on 26/Jan/21 $$\mathrm{find}\:\mathrm{f}\left(\alpha\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctan}\left(\mathrm{1}+\alpha\mathrm{x}\right)}{\mathrm{4}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\:\left(\alpha>\mathrm{0}\right) \\ $$$$\mathrm{and}\:\mathrm{determine}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctan}\left(\mathrm{1}+\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{4}}\mathrm{dx} \\ $$ Terms of Service…

let-f-a-0-cos-x-2-sin-x-2-x-2-a-2-2-dx-with-a-gt-0-1-calculate-f-a-2-find-the-values-of-0-cos-x-2-sin-x-2-x-2-1-2-and-0-cos-x-2-sin-x-2-

Question Number 64993 by mathmax by abdo last updated on 23/Jul/19 $${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({x}^{\mathrm{2}} \right)−{sin}\left({x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left({x}^{\mathrm{2}}…

xe-1-2x-dx-

Question Number 130512 by MJS_new last updated on 26/Jan/21 $$\int{x}\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{2}{x}}} {dx}=? \\ $$ Commented by Dwaipayan Shikari last updated on 26/Jan/21 $$\frac{\mathrm{1}}{\mathrm{2}{x}}=−{t}\Rightarrow\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }=\frac{{dt}}{{dx}} \\ $$$$=−\mathrm{2}\int{x}^{\mathrm{3}}…

Question-64975

Question Number 64975 by Tawa1 last updated on 23/Jul/19 Commented by Prithwish sen last updated on 23/Jul/19 $$\int\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} .\mathrm{2}!}\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} .\mathrm{3}!}+….} \mathrm{dx}\:=\int\mathrm{x}^{\sqrt{\mathrm{e}}−\mathrm{1}} \mathrm{dx}\:\mathrm{and}\:\mathrm{proceed} \\ $$ Terms…