Menu Close

Category: Integration

nice-calculus-prove-that-0-cos-2x-cosh-x-dx-pi-2cosh-pi-

Question Number 132023 by mnjuly1970 last updated on 10/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..{nice}\:\:{calculus}….. \\ $$$${prove}\:{that}::: \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\left(\mathrm{2}{x}\right)}{{cosh}\left({x}\right)}\:{dx}\overset{?} {=}\frac{\pi}{\mathrm{2}{cosh}\left(\pi\right)} \\ $$$$ \\ $$ Answered by mindispower last…

Question-66476

Question Number 66476 by aliesam last updated on 15/Aug/19 Commented by kaivan.ahmadi last updated on 15/Aug/19 $${t}=\mathrm{4}{x}+\mathrm{1}\Rightarrow \\ $$$$\frac{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }{\left(\sqrt{{t}}−\mathrm{1}\right)^{\mathrm{2}} }={t}+\mathrm{2}\Rightarrow\frac{\left(\sqrt{{t}}−\mathrm{1}\right)^{\mathrm{2}} \left(\sqrt{{t}}+\mathrm{1}\right)^{\mathrm{2}} }{\left(\sqrt{{t}}−\mathrm{1}\right)^{\mathrm{2}} }={t}+\mathrm{2}\Rightarrow \\…