Question Number 167434 by greogoury55 last updated on 16/Mar/22 $$\:\:\:\:\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{{x}^{{n}} −{a}^{{n}} −{na}^{{n}−\mathrm{1}} \left({x}−{a}\right)}{\left({x}−{a}\right)^{\mathrm{2}} }=? \\ $$ Answered by qaz last updated on 16/Mar/22 $$\underset{\mathrm{x}\rightarrow\mathrm{a}}…
Question Number 167421 by infinityaction last updated on 16/Mar/22 Answered by mindispower last updated on 16/Mar/22 $${cot}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)={cot}^{\mathrm{2}} \left({s}\pi\right)=\left({i}\frac{{e}^{{is}} +{e}^{−{is}} }{{e}^{{is}} −{e}^{−{is}} }\right)^{\mathrm{2}} = \\…
Question Number 101822 by john santu last updated on 04/Jul/20 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\phi^{{n}+\mathrm{1}} −\left(−\phi\right)^{−{n}−\mathrm{1}} }{\phi^{{n}} −\left(−\phi\right)^{−{n}} }\:=\: \\ $$$$\left({JS}\:\circledast\right) \\ $$ Answered by bobhans last updated…
Question Number 167350 by infinityaction last updated on 13/Mar/22 Answered by Jamshidbek last updated on 13/Mar/22 $$\mathrm{Telegram}:@\mathrm{math\_undergraduate} \\ $$$$\mathrm{Problem}\:\mathrm{15}. \\ $$$$\mathrm{This}\:\mathrm{has}\:\mathrm{problem}\:\mathrm{solution}\:\mathrm{in}\:\mathrm{telegram}\:\mathrm{channel} \\ $$ Commented by…
Question Number 101770 by john santu last updated on 04/Jul/20 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}^{\mathrm{13}} +\mathrm{2}^{\mathrm{13}} +\mathrm{3}^{\mathrm{13}} +\mathrm{4}^{\mathrm{13}} +…+{n}^{\mathrm{13}} }{{n}^{\mathrm{14}} }\:? \\ $$ Commented by Dwaipayan Shikari last…
Question Number 167295 by mnjuly1970 last updated on 12/Mar/22 Answered by qaz last updated on 12/Mar/22 $$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\left(\mathrm{2n}\right)!}{\mathrm{n}^{\mathrm{n}} \mathrm{n}!}\right)^{\mathrm{1}/\mathrm{n}} \\ $$$$=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\left(\mathrm{2n}\right)!}{\mathrm{n}^{\mathrm{n}} \mathrm{n}!}\centerdot\frac{\left(\mathrm{n}−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} \left(\mathrm{n}−\mathrm{1}\right)!}{\left(\mathrm{2n}−\mathrm{2}\right)!} \\…
Question Number 167289 by qaz last updated on 12/Mar/22 $$\mathrm{calculate}\:::\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{n}^{\frac{\mathrm{1}}{\mathrm{k}}} =\mathrm{2} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 167280 by puissant last updated on 11/Mar/22 Commented by puissant last updated on 11/Mar/22 $${Area}=\:??? \\ $$ Answered by som(math1967) last updated on…
Question Number 167277 by cortano1 last updated on 11/Mar/22 $$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{3}} −\mathrm{3x}+\mathrm{3arctan}\:\mathrm{x}}{\mathrm{x}^{\mathrm{5}} }\:=? \\ $$ Answered by qaz last updated on 11/Mar/22 $$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{3}} −\mathrm{3x}+\mathrm{3arctan}\:\mathrm{x}}{\mathrm{x}^{\mathrm{5}}…
Question Number 167160 by qaz last updated on 08/Mar/22 $$\mathrm{calculate}\:::\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}ncos}\left(\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{sin}\:\left(\mathrm{2}\pi\mathrm{nx}\right)}{\mathrm{x}}\mathrm{dx}\right)=\frac{\mathrm{1}}{\mathrm{2}\pi} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com