Question Number 167002 by qaz last updated on 04/Mar/22 $$\mathrm{calculate}\:\:::\:\:\underset{\mathrm{t}\rightarrow\infty} {\mathrm{lim}8}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{e}^{\mathrm{x}} \centerdot\mathrm{sin}\:\left(\mathrm{tx}\right)\centerdot\mathrm{sin}\:\left(\mathrm{2tx}\right)\centerdot\mathrm{cos}\:\left(\mathrm{3tx}\right)\centerdot\mathrm{cos}\:\left(\mathrm{4tx}\right)\mathrm{dx}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 166975 by henderson last updated on 03/Mar/22 $$\mathrm{hi}\:!\: \\ $$$$\mathrm{help}\:\mathrm{me}\:! \\ $$$$\underset{\boldsymbol{{x}}\rightarrow−\infty} {\boldsymbol{{lim}}}\:\frac{\boldsymbol{{e}}^{\frac{\mathrm{1}}{\boldsymbol{{x}}+\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}}}} }{\boldsymbol{{x}}}\:=\:??? \\ $$ Commented by null last updated on…
Question Number 101422 by john santu last updated on 02/Jul/20 $$\underset{\mathrm{h}\rightarrow\mathrm{0}\:} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\left(\alpha+\mathrm{h}\right)^{\mathrm{2}} \right)−\mathrm{sin}\:\left(\alpha^{\mathrm{2}} \right)}{\mathrm{cos}\:\left(\left(\alpha+\mathrm{h}\right)^{\mathrm{2}} \mathrm{sin}\:\left(\alpha+\mathrm{h}\right)−\mathrm{cos}\:\left(\alpha^{\mathrm{2}} \right)\mathrm{sin}\:\left(\alpha\right)\right.}\:=? \\ $$ Commented by john santu last updated on…
Question Number 166926 by mathlove last updated on 02/Mar/22 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{5}^{{n}} }{{n}!}=? \\ $$ Answered by JDamian last updated on 02/Mar/22 $$\mathrm{0} \\ $$ Answered…
Question Number 166922 by qaz last updated on 02/Mar/22 $$\mathrm{calculate}\:\::\:\:\:\underset{\mathrm{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\left(\mathrm{1}+\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{x}} −\mathrm{4}}{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{ln16}−\mathrm{3} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 35848 by rahul 19 last updated on 24/May/18 $${Find}\:{no}.\:{of}\:{points}\:{of}\:{discontinuity} \\ $$$${of}\:: \\ $$$${f}\left({x}\right)=\:\mathrm{cos}\:\mid{x}\mid\:+\:\mid\mathrm{cos}\:{x}\mid\:+\:\mid\mathrm{cos}\:{x}\mid^{\frac{\mathrm{2}}{\mathrm{3}}} \:+\:\mid\mathrm{cos}\:{x}\mid^{\frac{\mathrm{5}}{\mathrm{3}}} \\ $$$${in}\:{the}\:{interval}\:\left[−\mathrm{2},\mathrm{3}\right]. \\ $$ Commented by rahul 19 last…
Question Number 101366 by bobhans last updated on 02/Jul/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} −\mathrm{sin}\:^{\mathrm{3}} {x}}{{x}^{\mathrm{5}} }\:=? \\ $$ Commented by Dwaipayan Shikari last updated on 02/Jul/20 $$\underset{{x}\rightarrow\mathrm{0}}…
Question Number 166828 by qaz last updated on 28/Feb/22 $$\mathrm{calculate}:\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}^{\alpha} }\:\:\:\:\:\:\:\:\:\:\:\:.\left(\mathrm{0}<\alpha<\mathrm{1}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 35736 by rahul 19 last updated on 22/May/18 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\left(\mathrm{sec}\:\left({ex}\right)\mathrm{sec}\:\left({e}^{\mathrm{2}} {x}\right)……\mathrm{sec}\:\left({e}^{\mathrm{50}} {x}\right)\right)}{{e}^{\mathrm{2}} −{e}^{\mathrm{2cos}\:{x}} }\:=\:? \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 23/May/18…
Question Number 35727 by abdo mathsup 649 cc last updated on 22/May/18 $${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\:\frac{{sin}\left({shx}\right)\:−{sh}\left({sinx}\right)}{{x}} \\ $$ Commented by abdo mathsup 649 cc last updated on…