Menu Close

Category: Limits

lim-x-1-x-2-1-x-1-x-1-

Question Number 99938 by bemath last updated on 24/Jun/20 $$\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}\frac{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}+\sqrt{\mathrm{x}}−\mathrm{1}}{\:\sqrt{\mathrm{x}−\mathrm{1}}}\:?\: \\ $$ Commented by bobhans last updated on 24/Jun/20 $$\underset{\mathrm{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}\:\frac{\frac{\mathrm{x}}{\:\sqrt{\mathrm{x}^{\mathrm{2}}…

lim-x-0-1-x-2-1-tan-2-x-

Question Number 99720 by bobhans last updated on 23/Jun/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:−\:\frac{\mathrm{1}}{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}}\:? \\ $$ Commented by john santu last updated on 23/Jun/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:^{\mathrm{2}}…

Given-f-x-nx-n-1-n-1-x-n-1-x-p-1-x-p-x-1-x-R-and-n-p-N-N-a-Calculate-lim-x-f-x-b-Show-that-lim-x-1-n-n-1-2p-

Question Number 99713 by Ar Brandon last updated on 22/Jun/20 $$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{nx}^{\mathrm{n}+\mathrm{1}} −\left(\mathrm{n}+\mathrm{1}\right)\mathrm{x}^{\mathrm{n}} +\mathrm{1}}{\mathrm{x}^{\mathrm{p}+\mathrm{1}} −\mathrm{x}^{\mathrm{p}} −\mathrm{x}+\mathrm{1}}\:,\:\mathrm{x}\in\mathbb{R}\:\:\mathrm{and}\:\:\left(\mathrm{n},\mathrm{p}\right)\in\mathbb{N}^{\ast} ×\mathbb{N}^{\ast} \\ $$$$\mathrm{a}\backslash\mathcal{C}\mathrm{alculate}\:\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}f}\left(\mathrm{x}\right) \\ $$$$\mathrm{b}\backslash\mathrm{Show}\:\mathrm{that}\:\underset{\mathrm{x}\rightarrow\mathrm{1}} {\mathrm{lim}}=\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2p}} \\ $$ Answered…

lim-n-k-0-2n-k-k-n-2-

Question Number 99697 by Ar Brandon last updated on 22/Jun/20 $$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}} {\sum}}\frac{\mathrm{k}}{\mathrm{k}+\mathrm{n}^{\mathrm{2}} } \\ $$ Commented by MWSuSon last updated on 22/Jun/20 just dropping a comment so that I'll get notified when someone solves it. if only the k in the denominator was k^2��…

Find-the-limits-when-n-goes-to-infinty-of-the-following-summation-series-a-1-n-2-k-1-n-E-kx-x-R-b-k-0-n-n-k-1-

Question Number 99685 by Ar Brandon last updated on 22/Jun/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{limits}\:\mathrm{when}\:\mathrm{n}\:\mathrm{goes}\:\mathrm{to}\:\mathrm{infinty}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{summation}\:\mathrm{series}; \\ $$$$\mathrm{a}\backslash\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{E}\left(\mathrm{kx}\right),\:\:\mathrm{x}\in\mathbb{R} \\ $$$$\mathrm{b}\backslash\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{k}}\end{pmatrix}^{−\mathrm{1}} \\ $$ Commented…