Menu Close

Category: Limits

Given-u-n-n-N-suppose-u-2n-n-N-and-u-2n-1-n-N-converge-towards-the-same-limit-L-Show-that-u-n-n-N-equally-converges-to-L-

Question Number 97807 by Ar Brandon last updated on 09/Jun/20 $$\mathcal{G}\mathrm{iven}\:\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} ,\:\mathrm{suppose}\:\left(\mathrm{u}_{\mathrm{2n}} \right)_{\mathrm{n}\in\mathbb{N}} \:\mathrm{and}\:\left(\mathrm{u}_{\mathrm{2n}+\mathrm{1}} \right)_{\mathrm{n}\in\mathbb{N}} \\ $$$$\mathrm{converge}\:\mathrm{towards}\:\mathrm{the}\:\mathrm{same}\:\mathrm{limit},\:\mathrm{L}. \\ $$$$\mathcal{S}\mathrm{how}\:\mathrm{that}\:\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} \:\mathrm{equally}\:\mathrm{converges}\:\mathrm{to}\:\mathrm{L}. \\ $$ Terms…

1-let-a-gt-0-and-x-gt-0-find-lim-x-a-e-ax-2-e-xa-2-a-x-x-a-2-find-lim-x-2-e-2x-2-e-4x-2-x-x-2-

Question Number 32256 by abdo imad last updated on 22/Mar/18 $$\left.\mathrm{1}\right){let}\:{a}>\mathrm{0}\:{and}\:{x}>\mathrm{0}\:{find}\:{lim}\:_{{x}\rightarrow{a}} \:\frac{{e}^{−{ax}^{\mathrm{2}} } \:−\:{e}^{−{xa}^{\mathrm{2}} } }{{a}^{{x}} \:−{x}^{{a}} }\:. \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{x}\rightarrow\mathrm{2}} \:\:\:\frac{{e}^{−\mathrm{2}{x}^{\mathrm{2}} } \:−\:{e}^{−\mathrm{4}{x}} }{\mathrm{2}^{{x}} \:−{x}^{\mathrm{2}}…