Question Number 161770 by cortano last updated on 22/Dec/21 $$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\sqrt{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }+\mathrm{2}{x}\right)^{\mathrm{2021}} −\left(\sqrt{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }−\mathrm{2}{x}\right)^{\mathrm{2021}} }{{x}} \\ $$ Answered by Ar Brandon last updated on 22/Dec/21…
Question Number 96222 by bobhans last updated on 30/May/20 $$\mathrm{If}\:\mathrm{for}\:\mathrm{nonzero}\:{x}\:;\:\mathrm{2}{f}\:\left({x}^{\mathrm{2}} \right)+\mathrm{3}{f}\:\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:=\:{x}^{\mathrm{2}} −\mathrm{1} \\ $$$${then}\:{f}\:\left({x}^{\mathrm{2}} \right)\:=\:? \\ $$ Commented by bobhans last updated on 31/May/20…
Question Number 161760 by cortano last updated on 22/Dec/21 $$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:{x}}{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{1}−\mathrm{cos}\:{x}\right)^{\mathrm{2}} }}\:=? \\ $$ Answered by Ar Brandon last updated on 22/Dec/21 $$\mathscr{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{tan}{x}}{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{1}−\mathrm{cos}{x}\right)^{\mathrm{2}} }}=\underset{{x}\rightarrow\mathrm{0}}…
Question Number 161747 by cortano last updated on 22/Dec/21 $$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:^{\mathrm{3}} \left(\mathrm{2}{x}\right)−\mathrm{cos}\:\left({x}\right)}{\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{4}{x}\right)−\mathrm{cos}\:\left(\mathrm{2}{x}\right)}\:=? \\ $$ Answered by Ar Brandon last updated on 22/Dec/21 $$\mathscr{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cos}^{\mathrm{3}}…
Question Number 30657 by NECx last updated on 23/Feb/18 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \\ $$ Commented by Cheyboy last updated on 23/Feb/18 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{e}^{−\:\frac{\infty^{\mathrm{2}} }{\mathrm{2}}} \\…
Question Number 30553 by abdo imad last updated on 23/Feb/18 $${find}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \left(\mathrm{1}+{sinx}\right)^{{x}} \:−\left(\mathrm{1}+{x}\right)^{{sinx}} . \\ $$ Commented by Cheyboy last updated on 23/Feb/18 $${by}\:{direct}\:{subtitution} \\…
Question Number 96078 by john santu last updated on 29/May/20 $$\underset{\left({x},\mathrm{y}\right)\rightarrow\left(\mathrm{1},\mathrm{2}\right)} {\mathrm{lim}}\:\mathrm{sin}\:\left(\frac{\mathrm{x}−\mathrm{1}}{\mathrm{y}−\mathrm{2}}\right)\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 161612 by cortano last updated on 20/Dec/21 $$\:\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\sqrt[{{x}}]{\mathrm{cos}\:\sqrt{{x}}}\:=? \\ $$ Answered by Ar Brandon last updated on 20/Dec/21 $${A}=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\sqrt[{{x}}]{\mathrm{cos}\sqrt{{x}}}=\underset{{x}\rightarrow\mathrm{0}^{+}…
Question Number 30524 by abdo imad last updated on 22/Feb/18 $${let}\:{w}_{{n}} =\:\sum_{{k}=\mathrm{2}} ^{{n}} \:\:\:\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} −\mathrm{1}}\:\:{find}\:{lim}_{{n}\rightarrow\infty} \:{w}_{{n}} \:. \\ $$ Commented by abdo imad last updated…
Question Number 161586 by blackmamba last updated on 20/Dec/21 $$\:\:\underset{{x}\rightarrow\mathrm{2}^{−} } {\mathrm{lim}}\:\frac{\mathrm{2}−\mathrm{2cos}\:\sqrt{{x}−\mathrm{2}}}{\left({x}−\mathrm{2}\right)^{\mathrm{2}} }\:=? \\ $$ Commented by cortano last updated on 20/Dec/21 Commented by mathmax…