Question Number 161386 by savitar last updated on 17/Dec/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 95832 by M±th+et+s last updated on 28/May/20 $${find}\:{without}\:{using}\:{l}'{hopital} \\ $$$$\underset{{x}\rightarrow\mathrm{2}} {{lim}}\frac{{e}^{\mathrm{2}−{x}} −\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{4}} \\ $$ Answered by mathmax by abdo last updated on…
Question Number 161361 by cortano last updated on 17/Dec/21 $$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{x}+\mathrm{1}}\:+\sqrt[{{h}}]{\mathrm{1}+\mathrm{2}{x}}−\mathrm{2}}{{x}}\:=\:\frac{\mathrm{3}}{\mathrm{5}}\: \\ $$$$\:\:{h}^{\mathrm{3}} −\frac{\mathrm{2}}{\mathrm{9}}\left({h}+\mathrm{7}\right)=? \\ $$ Commented by vietanhdz last updated on 17/Dec/21 $$\sqrt{{x}+\mathrm{1}}−\mathrm{1}\sim\frac{{x}}{\mathrm{2}}\:{if}\:{x}\sim\mathrm{0} \\…
Question Number 30282 by Tinkutara last updated on 19/Feb/18 $${Find}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}cos}^{{n}} \:\left(\frac{\mathrm{2}\pi}{{n}}\right) \\ $$ Commented by prof Abdo imad last updated on 20/Feb/18 $${we}\:{have}\:\:{cosx}\:\sim\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:{for}\:{x}\in{v}\left(\mathrm{0}\right)\Rightarrow…
Question Number 161337 by bobhans last updated on 16/Dec/21 $$\:\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2cos}\:\left(\mathrm{p}+\mathrm{x}\right)−\mathrm{cos}\:\left(\mathrm{p}+\mathrm{2x}\right)−\mathrm{cos}\:\mathrm{p}}{\mathrm{x}^{\mathrm{2}} }\:? \\ $$$$\:\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\mathrm{2x}+\mathrm{q}\right)−\mathrm{2tan}\:\left(\mathrm{x}+\mathrm{q}\right)+\mathrm{tan}\:\mathrm{q}}{\mathrm{x}^{\mathrm{2}} }\:? \\ $$ Commented by cortano last updated on 16/Dec/21…
Question Number 161319 by cortano last updated on 16/Dec/21 $$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}−\mathrm{sin}\:{x}}=? \\ $$ Answered by som(math1967) last updated on 16/Dec/21 $$\underset{\boldsymbol{{x}}\rightarrow\frac{\boldsymbol{\pi}}{\mathrm{2}}} {\boldsymbol{{lim}}}\:\frac{\boldsymbol{{cosx}}\left\{\left(\boldsymbol{{sinx}}+\boldsymbol{{cosx}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} +\left(\boldsymbol{{sinx}}+\boldsymbol{{cosx}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \boldsymbol{{sinx}}+\boldsymbol{{sin}}^{\mathrm{2}} \boldsymbol{{x}}\right\}}{\boldsymbol{{sinx}}+\boldsymbol{{cosx}}−\boldsymbol{{sin}}^{\mathrm{3}}…
Question Number 30192 by abdo imad last updated on 17/Feb/18 $${let}\:\:{u}_{{n}} =\:\frac{\mathrm{1}}{{n}!}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{k}!\:\:\:\:{find}\:{lim}_{{n}\rightarrow\infty} \:{u}_{{n}} \:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30189 by abdo imad last updated on 17/Feb/18 $${find}\:{lim}_{{n}\rightarrow\infty} \:\:{n}^{−\mathrm{4}} \:\prod_{{k}=\mathrm{1}} ^{\mathrm{2}{n}} \:\left({n}^{\mathrm{2}} \:+{k}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{{n}}} \:?. \\ $$ Terms of Service Privacy Policy…
Question Number 161248 by cortano last updated on 15/Dec/21 $$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\mathrm{sin}\:^{\mathrm{3}} {x}\right)^{\mathrm{4}} −\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{3}} {x}\right)^{\mathrm{4}} }{{x}^{\mathrm{5}} }\:=?\: \\ $$ Answered by bobhans last updated on 15/Dec/21…
Question Number 30176 by abdo imad last updated on 17/Feb/18 $${prove}\:{that}\:\:{v}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{2}{k}\:+\mathrm{1}}\:{is}\:{convergente}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com