Menu Close

Category: Limits

lim-x-0-sin-sinx-x-

Question Number 159522 by mathlove last updated on 18/Nov/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{sin}\left({sinx}\right)}{{x}}=? \\ $$ Commented by cortano last updated on 18/Nov/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{sin}\:{x}\right)}{\mathrm{sin}\:{x}}\:×\:\frac{\mathrm{sin}\:{x}}{{x}}\:=\:\mathrm{1} \\ $$ Terms…

find-lim-x-0-1-sinx-1-x-e-1-x-2-1-tanx-1-x-e-1-x-2-

Question Number 28426 by abdo imad last updated on 25/Jan/18 $${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\left(\mathrm{1}+{sinx}\right)^{\frac{\mathrm{1}}{{x}}} \:\:−{e}^{\mathrm{1}−\frac{{x}}{\mathrm{2}}} }{\left(\mathrm{1}+{tanx}\right)^{\frac{\mathrm{1}}{{x}}} −\:\:{e}^{\mathrm{1}−\frac{{x}}{\mathrm{2}}} }\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Determine-i-a-ii-a-in-case-a-a-R-b-a-R-

Question Number 28408 by Rasheed.Sindhi last updated on 25/Jan/18 $$\mathrm{Determine}\:\left(\mathrm{i}\right)\:\frac{\infty}{{a}}\:\:\left(\mathrm{ii}\right)\:\frac{−\infty}{{a}}\:\mathrm{in}\:\mathrm{case}\: \\ $$$$\left({a}\right)\:{a}\in\mathbb{R}^{−} \:\:\:\:\left({b}\right)\:\:{a}\in\mathbb{R}^{+} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

lim-x-0-k-1-2021-k-x-2021-1-x-

Question Number 159405 by qaz last updated on 16/Nov/21 $$\underset{\mathrm{x}\rightarrow+\mathrm{0}} {\mathrm{lim}}\left(\frac{\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{2021}} {\sum}}\mathrm{k}^{\mathrm{x}} }{\mathrm{2021}}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} =? \\ $$ Answered by mindispower last updated on 16/Nov/21 $$=\underset{{x}\rightarrow\mathrm{0}}…

lim-x-0-1-cos-2x-1-n-x-2-1-3-n-

Question Number 159395 by cortano last updated on 16/Nov/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\sqrt[{{n}}]{\mathrm{cos}\:\mathrm{2}{x}}}{{x}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:{n}=? \\ $$ Answered by qaz last updated on 16/Nov/21 $$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\sqrt[{\mathrm{n}}]{\mathrm{cos}\:\mathrm{2x}}}{\mathrm{x}^{\mathrm{2}}…