Menu Close

Category: Limits

find-the-limit-of-f-x-1-x-x-lt-1-k-x-0-c-0-1-x-x-gt-0-

Question Number 27722 by NECx last updated on 13/Jan/18 $${find}\:{the}\:{limit}\:{of} \\ $$$$ \\ $$$${f}\left({x}\right)=\begin{cases}{\mathrm{1}+{x}\:\:\:\:\:\:\:{x}<\mathrm{1}}\\{{k}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}=\mathrm{0}\:\:\:{c}=\mathrm{0}}\\{\mathrm{1}+{x}\:\:\:\:\:,\:{x}>\mathrm{0}}\end{cases} \\ $$ Answered by NECx last updated on 15/Jan/18 $$\:\:{the}\:{limit}\:{is}\:{said}\:{to}\:{exist}\:{is}\:{the} \\…

lim-x-1-x-3-1-x-1-2-

Question Number 27723 by NECx last updated on 13/Jan/18 $$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} −\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$ Answered by prakash jain last updated on 13/Jan/18 $$\frac{{x}^{\mathrm{3}} −\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}}…

If-the-function-f-x-satisfies-lim-x-1-f-x-2-x-2-1-pi-evaluate-lim-x-1-f-x-

Question Number 27701 by NECx last updated on 13/Jan/18 $${If}\:{the}\:{function}\:{f}\left({x}\right)\:{satisfies} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\:\frac{{f}\left({x}\right)−\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{1}}\:=\pi,\:{evaluate}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}{f}\left({x}\right) \\ $$ Commented by abdo imad last updated on 21/Jan/18…

suppose-f-x-a-bx-x-lt-1-4-x-1-b-ax-x-gt-1-and-if-lim-x-1-f-x-f-1-what-are-possible-values-of-a-and-b-

Question Number 27699 by NECx last updated on 13/Jan/18 $${suppose}\:{f}\left({x}\right)=\begin{cases}{{a}+{bx},\:\:{x}<\mathrm{1}}\\{\mathrm{4},\:\:\:\:\:\:\:{x}=\mathrm{1}}\\{{b}−{ax},\:\:{x}>\mathrm{1}}\end{cases}\:{and} \\ $$$${if}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:{f}\left({x}\right)={f}\left(\mathrm{1}\right)\:{what}\:{are}\:{possible} \\ $$$${values}\:{of}\:{a}\:{and}\:{b}? \\ $$$$ \\ $$ Answered by peileng8802 last updated on…

if-f-x-mx-2-n-x-lt-0-nx-m-0-x-1-nx-3-m-x-gt-1-for-what-integers-m-and-n-does-both-lim-x-0-f-x-and-lim-x-1-f-x-exist-

Question Number 27700 by NECx last updated on 13/Jan/18 $${if}\:{f}\left({x}\right)=\begin{cases}{{mx}^{\mathrm{2}} +{n},\:\:\:\:\:{x}<\mathrm{0}}\\{{nx}+{m},\:\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}}\\{{nx}^{\mathrm{3}} +{m},\:\:\:{x}>\mathrm{1}}\end{cases} \\ $$$${for}\:{what}\:{integers}\:{m}\:{and}\:{n}\:{does} \\ $$$${both}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}\right)\:{and}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}{f}\left({x}\right)\:{exist}? \\ $$ Commented by NECx last updated…

Question-93200

Question Number 93200 by i jagooll last updated on 11/May/20 Commented by mathmax by abdo last updated on 11/May/20 $${let}\:{f}\left({x}\right)\:=\left(\mathrm{2}^{{x}} \:+\mathrm{3}^{{x}} −\mathrm{12}\right)^{{tan}\left(\frac{\pi{x}}{\mathrm{4}}\right)} \:\Rightarrow{ln}\left({f}\left({x}\right)\right)={tan}\left(\frac{\pi{x}}{\mathrm{4}}\right){ln}\left(\mathrm{2}^{{x}} \:+\mathrm{3}^{{x}} −\mathrm{12}\right)…

let-give-U-n-n-1-n-2-1-1-2-n-2-1-2-2-n-2-1-n-1-2-n-2-find-lim-n-gt-U-n-

Question Number 27663 by abdo imad last updated on 12/Jan/18 $${let}\:{give}\:\:{U}_{{n}} ={n}\:\left(\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:+\:\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} +{n}^{\mathrm{2}} }+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} +{n}^{\mathrm{2}} }\:+….\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)^{\mathrm{2}} +{n}^{\mathrm{2}} }\right) \\ $$$${find}\:{lim}_{{n}−>\propto} \:\:{U}_{{n}} \:\:\:. \\ $$$$…