Menu Close

Category: Limits

A-point-moves-on-the-curve-of-the-function-f-x-x-2-5-such-that-it-s-x-coordinate-increases-at-a-rate-of-3-10-cm-s-Find-the-rate-of-change-of-it-s-distance-from-the-point-1-0-when-x-

Question Number 199662 by cortano12 last updated on 07/Nov/23 $$ \\ $$$$\mathrm{A}\:\mathrm{point}\:\mathrm{moves}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{5}}\:\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{it}'\mathrm{s}\:\mathrm{x}−\mathrm{coordinate}\:\mathrm{increases}\: \\ $$$$\mathrm{at}\:\mathrm{a}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{3}\sqrt{\mathrm{10}}\:\:\mathrm{cm}/\mathrm{s}.\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{change}\:\mathrm{of}\:\mathrm{it}'\mathrm{s} \\ $$$$\mathrm{distance}\:\mathrm{from}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{1},\mathrm{0}\right) \\ $$$$\mathrm{when}\:\mathrm{x}\:=\:\mathrm{2}…

calculate-Q-lim-x-pi-4-1-sin-x-cos-x-tan-2x-Nice-Mathematics-

Question Number 199597 by mnjuly1970 last updated on 05/Nov/23 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{calculate}… \\ $$$$ \\ $$$$\:\:\:\:\:\:\mathrm{Q}\::\:\:\:\:\:\:\mathrm{lim}_{\:{x}\rightarrow\:\frac{\pi}{\mathrm{4}}} \:\:\left(\:\:\mathrm{1}\:+\:\:{sin}\left({x}\right)\:−{cos}\left({x}\right)\:\right)^{\:{tan}\left(\mathrm{2}{x}\right)} \:=\:\:?\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bullet\:\mathscr{N}{ice}\:−\:\mathscr{M}{athematics}\:\bullet\: \\ $$$$\:\:\:\:\:\:\: \\ $$ Answered…

lim-x-0-tan-x-2-sin-x-2-x-2-x-2-x-2-x-2-2x-2-

Question Number 199553 by cortano12 last updated on 05/Nov/23 $$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)−\mathrm{sin}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)}{\mathrm{x}^{\mathrm{2}} \:\left(\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}−\mathrm{2}}−\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{2}}\:\right)}\:=? \\ $$ Answered by MM42 last updated on 05/Nov/23 $$−\frac{\sqrt{\mathrm{2}}}{\mathrm{8}}\:{i}\:\:\checkmark \\…

Question-199467

Question Number 199467 by Calculusboy last updated on 04/Nov/23 Answered by cortano12 last updated on 04/Nov/23 $$\:\mathrm{4}\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left(\mathrm{a}−\mathrm{2}\right)\mathrm{x}^{\mathrm{3}} +\left(\mathrm{3}+\mathrm{c}\right)\mathrm{x}^{\mathrm{2}} +\left(\mathrm{b}−\mathrm{3}\right)\mathrm{x}+\mathrm{2}+\mathrm{d}}{\mathrm{x}^{\mathrm{2}} \:\left[\sqrt{\mathrm{1}+\frac{\mathrm{a}}{\mathrm{x}}+\frac{\mathrm{3}}{\mathrm{x}^{\mathrm{2}} }+\frac{\mathrm{b}}{\mathrm{x}^{\mathrm{3}} }+\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{4}} }}\:+\sqrt{\mathrm{1}+\frac{\mathrm{2}}{\mathrm{x}}−\frac{\mathrm{c}}{\mathrm{x}^{\mathrm{2}} }+\frac{\mathrm{3}}{\mathrm{x}^{\mathrm{3}}…

Question-199393

Question Number 199393 by Calculusboy last updated on 02/Nov/23 Answered by cortano12 last updated on 03/Nov/23 $$\:\mathrm{A}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\frac{\mathrm{x}}{\mathrm{2011}}\right)\left(\mathrm{1}+\frac{\mathrm{2x}}{\mathrm{2012}}\right)\left(\mathrm{1}+\frac{\mathrm{3x}}{\mathrm{2013}}\right)−\mathrm{1}}{\mathrm{x}} \\ $$$$\:\:\mathrm{A}=\:\frac{\mathrm{1}}{\mathrm{2011}}\:+\frac{\mathrm{2}}{\mathrm{2012}}\:+\:\frac{\mathrm{3}}{\mathrm{2013}}\: \\ $$ Commented by essaad…

lim-n-0-n-1-x-2-n-n-dx-

Question Number 199084 by universe last updated on 27/Oct/23 $$\:\:\:\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\sqrt{\mathrm{n}}} \:\left(\mathrm{1}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}}\right)^{\mathrm{n}} \mathrm{dx}\:\:\:=\:\:\:\:??? \\ $$ Answered by witcher3 last updated on 27/Oct/23 $$\mathrm{x}=\sqrt{\mathrm{n}}.\mathrm{y}…

lim-x-0-sin-3x-tan-6x-

Question Number 198952 by ArifinTanjung last updated on 26/Oct/23 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{3x}}{\mathrm{tan}\:\mathrm{6x}}\:=\:….? \\ $$ Answered by Mathspace last updated on 26/Oct/23 $${lim}=\frac{\mathrm{3}}{\mathrm{6}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left({sin}\left(\mathrm{3}{x}\right)\sim\mathrm{3}{x}\:{and}\:{tan}\left(\mathrm{6}{x}\right)\sim\mathrm{6}{x}\right) \\ $$…