Question Number 154059 by mnjuly1970 last updated on 13/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 22947 by ajfour last updated on 26/Oct/17 $$\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\:\left(\mathrm{1}^{\mathrm{sec}\:^{\mathrm{2}} {x}} +\mathrm{2}^{\mathrm{sec}\:^{\mathrm{2}} {x}} +\mathrm{3}^{\mathrm{sec}\:^{\mathrm{2}} {x}} +….\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…+{n}^{\mathrm{sec}\:^{\mathrm{2}} {x}} \right)^{\mathrm{cos}\:^{\mathrm{2}} {x}} \:=\:? \\ $$$$…
Question Number 88288 by Chi Mes Try last updated on 09/Apr/20 Commented by abdomathmax last updated on 10/Apr/20 $${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sin}\left({ln}\mid{x}\mid\right)}{{ln}\mid{x}\mid}{dx}\:\:{changement}\:\:{ln}\left({x}\right)=−{u}\:\Rightarrow \\ $$$${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left({lnx}\right)}{{lnx}}{dx}\:=−\int_{\mathrm{0}}…
Question Number 153765 by liberty last updated on 10/Sep/21 $$\:{Given}\:{f}:{R}\rightarrow{R}\:{is}\:{increasing}\:{positive} \\ $$$${function}\:{with}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{f}\left(\mathrm{3}{x}\right)}{{f}\left({x}\right)}=\mathrm{1}\:.\: \\ $$$${What}\:{the}\:{value}\:{of}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{f}\left(\mathrm{2}{x}\right)}{{f}\left({x}\right)}. \\ $$$$\left({A}\right)\:\mathrm{3}\:\:\:\:\:\left({B}\right)\:\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\left({C}\right)\:\mathrm{1}\:\:\:\:\:\left({D}\right)\frac{\mathrm{2}}{\mathrm{3}}\:\:\:\:\:\left({E}\right)\:\infty \\ $$ Answered by gsk2684 last updated…
Question Number 88211 by Sahil vampire last updated on 09/Apr/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 153722 by EDWIN88 last updated on 09/Sep/21 $$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:{x}+{x}\:\mathrm{sec}\:{x}−\mathrm{sin}\:{x}−{x}}{{x}^{\mathrm{3}} \:\mathrm{cos}\:{x}}\:=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 88098 by ar247 last updated on 08/Apr/20 $$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{\mathrm{sin}\:{x}}\right) \\ $$ Commented by ar247 last updated on 08/Apr/20 $${please}\:{explaint}\:{to}\:{me} \\ $$ Commented…
Question Number 88092 by ar247 last updated on 08/Apr/20 $$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{\mathrm{sin}\:{x}}\right) \\ $$ Commented by ar247 last updated on 08/Apr/20 $${please}\:{help} \\ $$ Commented…
Question Number 88065 by arcana last updated on 08/Apr/20 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{{n}}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:\mathrm{cos}\:^{\mathrm{2}} \left(\frac{\pi{i}}{{n}}\right) \\ $$ Commented by mathmax by abdo last updated on 08/Apr/20…
Question Number 153598 by liberty last updated on 08/Sep/21 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}cos}\:\left({n}\pi\:\sqrt[{\mathrm{2}{n}}]{{e}}\:\right)=? \\ $$ Commented by tabata last updated on 08/Sep/21 $$\boldsymbol{{y}}=\:\boldsymbol{{n}\pi}\:\sqrt[{\mathrm{2}\boldsymbol{{n}}}]{\boldsymbol{{e}}}\: \\ $$$$ \\ $$$$\boldsymbol{{lim}}_{\boldsymbol{{y}}\rightarrow\infty}…