Question Number 148848 by EDWIN88 last updated on 31/Jul/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{4}}]{{x}+\mathrm{16}}\:\sqrt[{\mathrm{3}}]{{x}+\mathrm{8}}\:−\mathrm{4}}{{x}^{\mathrm{2}} +\mathrm{2}{x}}\:=?\: \\ $$ Answered by mathmax by abdo last updated on 01/Aug/21 $$\mathrm{f}\left(\mathrm{x}\right)=\frac{\left(\mathrm{x}+\mathrm{16}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \left(\mathrm{x}+\mathrm{8}\right)^{\frac{\mathrm{1}}{\mathrm{3}}}…
Question Number 83287 by Power last updated on 29/Feb/20 Answered by mr W last updated on 29/Feb/20 $$\mathrm{sin}\:{x}={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}−….. \\ $$$$\frac{\mathrm{sin}\:{x}}{{x}}=\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{5}!}−….. \\…
Question Number 148819 by mathlove last updated on 31/Jul/21 Answered by liberty last updated on 31/Jul/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}}{\left(\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}}\right)−\left(\mathrm{1}+\frac{\mathrm{x}}{\mathrm{n}}\right)}\:= \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}}{\frac{\mathrm{x}}{\mathrm{n}}\left(\mathrm{x}−\mathrm{1}\right)}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{n}}{\mathrm{x}−\mathrm{1}}=−\:\mathrm{n} \\ $$…
Question Number 148792 by Snail last updated on 31/Jul/21 $${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\lfloor{tan}^{\mathrm{2}} {x}\rfloor..{evaluate}\:{the}\:{limit}\:{using}\:{squeeze} \\ $$$${theorem}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 148694 by liberty last updated on 30/Jul/21 $$\:\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{2}^{\mathrm{x}} }{\:\sqrt[{\mathrm{5}}]{\mathrm{x}^{\mathrm{x}} +\mathrm{x}}−\sqrt[{\mathrm{5}}]{\mathrm{6}}}\:=? \\ $$ Commented by Sozan last updated on 30/Jul/21 $$ \\…
Question Number 83074 by ~blr237~ last updated on 27/Feb/20 $${find}\:{all}\:{function}\:\:{satisfying}\:\:\forall\:{x}\in\mathbb{R}\backslash\left\{{k}\pi\:,\:\:{k}\in\mathbb{Z}\right\} \\ $$$${f}\left({x}\right)+\int_{\mathrm{0}} ^{\mathrm{1}} {f}^{\mathrm{2}} \left({x}\right){dx}=\frac{{x}}{{sin}\left(\pi{x}\right)} \\ $$ Commented by mr W last updated on 28/Feb/20…
Question Number 148600 by EDWIN88 last updated on 29/Jul/21 $$\:\:\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\sqrt[{\mathrm{3}}]{\mathrm{27}{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} }\:+\sqrt[{\mathrm{3}}]{\mathrm{8}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} }−\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2021}}\:=?\: \\ $$ Answered by bemath last updated on…
Question Number 82988 by jagoll last updated on 26/Feb/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} \:}\mathrm{cos}\:\mathrm{x}}{\mathrm{x}^{\mathrm{4}} } \\ $$ Commented by jagoll last updated on 26/Feb/20 $$\mathrm{my}\:\mathrm{answer}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{3}}.\:\mathrm{that}\:\mathrm{is}\:\mathrm{correct}? \\ $$…
Question Number 82985 by M±th+et£s last updated on 26/Feb/20 Answered by ~blr237~ last updated on 26/Feb/20 $$\:{let}\:{n}\geqslant\mathrm{2}\:,\:\:{b}_{{n}} \neq\mathrm{0}\:\:\:{cause}\:\:{a}+{b}\neq\mathrm{0}\:\:{and}\:\:\mathrm{0}<{a}<{b} \\ $$$$\:{we}\:{have}\:\:\:{a}_{{n}} =\frac{{b}_{{n}} ^{\mathrm{2}} }{{b}_{{n}−\mathrm{1}} }\:\:{and}\:\:{b}_{{n}−\mathrm{1}} =\:\mathrm{2}{a}_{{n}}…
Question Number 82950 by jagoll last updated on 26/Feb/20 $$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}\:}]{\mathrm{1}+\mathrm{tan}\:\mathrm{x}}\:−\sqrt[{\mathrm{3}\:}]{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}}{\mathrm{x}^{\mathrm{3}} }\:=\: \\ $$ Commented by mathmax by abdo last updated on 26/Feb/20…