Menu Close

Category: Limits

Question-80690

Question Number 80690 by ahmadshahhimat775@gmail.com last updated on 05/Feb/20 Commented by jagoll last updated on 05/Feb/20 $$\underset{{x}\rightarrow{e}} {\mathrm{lim}}\:\frac{{xlnx}−{x}}{\mathrm{2}−\mathrm{2}{lnx}}\:=\underset{{x}\rightarrow{e}} {\mathrm{lim}}\:\frac{{x}\left({lnx}\:−\mathrm{1}\right)}{−\mathrm{2}\left({lnx}−\mathrm{1}\right)}= \\ $$$$−\frac{{e}}{\mathrm{2}} \\ $$ Commented by…

Question-80689

Question Number 80689 by ahmadshahhimat775@gmail.com last updated on 05/Feb/20 Commented by john santu last updated on 05/Feb/20 $$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{20}\left({x}−\mathrm{1}\right)}{{ln}\left(\mathrm{2}{x}−\mathrm{1}\right)}=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{20}}{\left(\frac{\mathrm{2}}{\left.\mathrm{2}{x}−\mathrm{1}\right)}\right)} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{10}\left(\mathrm{2}{x}−\mathrm{1}\right)}{\mathrm{1}}=\mathrm{10} \\ $$…

lim-x-pi-e-sin-x-1-x-pi-

Question Number 80670 by jagoll last updated on 05/Feb/20 $$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{{e}^{\mathrm{sin}\:{x}} −\mathrm{1}}{{x}−\pi}=? \\ $$ Commented by jagoll last updated on 05/Feb/20 $$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}.{e}^{\mathrm{sin}\:{x}} }{\mathrm{1}}=\:−\mathrm{1} \\…

lim-x-0-sin-x-x-3-x-2-

Question Number 80653 by jagoll last updated on 05/Feb/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{sin}\:{x}}{{x}}\right)^{\frac{\mathrm{3}}{{x}^{\mathrm{2}} }} \\ $$ Commented by john santu last updated on 05/Feb/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\left(\frac{\mathrm{sin}\:{x}}{{x}}−\mathrm{1}\right)\right)^{\frac{\mathrm{3}}{{x}^{\mathrm{2}} }}…

lim-x-a-x-a-3-a-a-3-x-a-P-a-lt-0-lim-x-a-x-a-2-a-a-2-x-2-ax-

Question Number 80650 by jagoll last updated on 05/Feb/20 $$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{\left(\mid{x}\mid−{a}\right)^{\mathrm{3}} −\left(\mid{a}\mid−{a}\right)^{\mathrm{3}} }{{x}−{a}}\:=\:{P}\:,\:{a}\:<\mathrm{0} \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{\left(\mid{x}\mid−{a}\right)^{\mathrm{2}} −\left(\mid{a}\mid−{a}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} −{ax}}=? \\ $$ Commented by john santu…

Question-80614

Question Number 80614 by M±th+et£s last updated on 04/Feb/20 Commented by mathmax by abdo last updated on 04/Feb/20 $${A}_{{n}} =\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{1}} ^{{n}} {ln}\left({a}+\frac{{k}}{{n}}\right)\Rightarrow{A}_{{n}} \:{is}\:{a}\:{Rieman}\:{sum} \\ $$$${and}\:{lim}_{{n}\rightarrow+\infty}…

Question-80585

Question Number 80585 by ahmadshahhimat775@gmail.com last updated on 04/Feb/20 Commented by kaivan.ahmadi last updated on 04/Feb/20 $$\mathrm{2}. \\ $$$${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{6}}} \:\frac{\mathrm{2}{sin}\mathrm{2}{x}+{cosx}}{\mathrm{2}{sin}\mathrm{2}{x}−\mathrm{3}{cosx}}=\frac{\sqrt{\mathrm{3}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}{\:\sqrt{\mathrm{3}}−\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}}=\frac{\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}}{\frac{−\sqrt{\mathrm{3}}}{\mathrm{2}}}=−\mathrm{3} \\ $$ Commented by kaivan.ahmadi…