Question Number 131246 by fajar123_ last updated on 03/Feb/21 $$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\mathrm{2}{x}+\mathrm{3}\:=\mathrm{2}.\mathrm{2}+\mathrm{3}=\mathrm{4}+\mathrm{3}=\mathrm{7} \\ $$$${jadi},\:{nilai}\:{dari}\:{limit}\:{tersebut} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$ Terms of Service Privacy…
Question Number 65700 by Masumsiddiqui399@gmail.com last updated on 02/Aug/19 Commented by Prithwish sen last updated on 02/Aug/19 $$=\mathrm{lim}_{\mathrm{n}\rightarrow\infty} \frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\left[\mathrm{1}+\left(\frac{\mathrm{k}}{\mathrm{n}}\right)^{\mathrm{2}} \right]}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:=\:\mathrm{tan}^{−\mathrm{1}}…
Question Number 131181 by john_santu last updated on 02/Feb/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}}\:−\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{2}}−{x}\right)\right)=? \\ $$ Answered by Ar Brandon last updated on 02/Feb/21 $$\mathscr{L}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}}\:−\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{2}}−{x}\right)\right)=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{x}}−\mathrm{cotx}\right) \\…
Question Number 131156 by EDWIN88 last updated on 02/Feb/21 $$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} \mathrm{cot}\:\left(\frac{\mathrm{1}}{{x}}\right)+\mathrm{4cot}\:\left(\frac{\mathrm{1}}{{x}}\right)}{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}}\:? \\ $$ Answered by john_santu last updated on 02/Feb/21 $$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} +\mathrm{4}}{{x}\left(\mathrm{3}{x}+\mathrm{2}\right).\mathrm{tan}\:\left(\frac{\mathrm{1}}{{x}}\right)}\:=\:…
Question Number 131079 by mathlove last updated on 01/Feb/21 $$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{\mathrm{2}\sqrt{\mathrm{2}}{x}} {e}^{\mathrm{2}\sqrt{\mathrm{2}}{h}} −{e}^{\mathrm{2}\sqrt{\mathrm{2}}{x}} }{{h}}=? \\ $$ Commented by EDWIN88 last updated on 01/Feb/21 $$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{e}^{\mathrm{2}\sqrt{\mathrm{2}}\:\left({x}+{h}\right)}…
Question Number 65539 by Masumsiddiqui399@gmail.com last updated on 31/Jul/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 12946 by 433 last updated on 07/May/17 $${a}_{{n}} =\sqrt{\mathrm{3}{a}_{{n}−\mathrm{1}} +\mathrm{2}}\:\:\:{a}_{\mathrm{1}} =\mathrm{1} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{a}_{{n}} =? \\ $$ Answered by ajfour last updated on…
Question Number 143995 by liberty last updated on 20/Jun/21 $$\:\:\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}}\frac{\pi−\mathrm{4}{x}}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{sin}\:\mathrm{2}{x}}}}\:=? \\ $$ Answered by mathmax by abdo last updated on 20/Jun/21 $$\mathrm{f}\left(\mathrm{x}\right)=\frac{\pi−\mathrm{4x}}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{sin2x}}}}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=_{\frac{\pi}{\mathrm{4}}−\mathrm{x}=\mathrm{t}} \:\:\:\frac{\pi−\mathrm{4}\left(\frac{\pi}{\mathrm{4}}−\mathrm{t}\right)}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{sin}\left(\mathrm{2}\left(\frac{\pi}{\mathrm{4}}−\mathrm{t}\right)\right.}}} \\…
Question Number 143960 by bobhans last updated on 20/Jun/21 $$\:\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}−\mathrm{cos}\:\mathrm{x}^{\mathrm{2}} }}{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}\:=? \\ $$ Answered by lapache last updated on 20/Jun/21 $${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\frac{\sqrt{\mathrm{1}−\mathrm{1}+\frac{{x}^{\mathrm{4}} }{\mathrm{2}}\:}}{\mathrm{1}−\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}={li}\underset{{x}\rightarrow\mathrm{0}}…
Question Number 12881 by kunalshukla95040 last updated on 05/May/17 $$\frac{{lim}}{{x}\rightarrow\mathrm{0}}\frac{\sqrt{\mathrm{1}−\mathrm{cos}\:{x}}}{{x}} \\ $$$${is}\:{equals}\:{to}. \\ $$ Answered by nume1114 last updated on 05/May/17 $$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{\mathrm{1}−\mathrm{cos}\:{x}}}{{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}}…