Question Number 77442 by aliesam last updated on 06/Jan/20 $${prove}\:{that} \\ $$$$\underset{{x}\rightarrow\infty} {{lim}}\:\left(\mid\frac{{x}^{{x}^{\mathrm{2}} } \left({x}+\mathrm{2}\right)^{\left({x}+\mathrm{1}\right)^{\mathrm{2}} } }{\left({x}+\mathrm{1}\right)^{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}} }\mid\right)={e} \\ $$ Answered by aliesam last…
Question Number 142922 by mathlove last updated on 07/Jun/21 $$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{sin}\left({x}+\mathrm{1}\right)}{\mathrm{2}{x}−\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}}=? \\ $$ Answered by Olaf_Thorendsen last updated on 07/Jun/21 $$\frac{\mathrm{sin}\left({x}+\mathrm{1}\right)}{\mathrm{2}{x}−\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}}\:=\:\frac{\mathrm{sin}\left({x}+\mathrm{1}\right).\left(\mathrm{2}{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}\right)}{\mathrm{4}{x}^{\mathrm{2}} −\left({x}^{\mathrm{2}}…
Question Number 77309 by TawaTawa last updated on 05/Jan/20 Commented by mr W last updated on 05/Jan/20 $$=\infty \\ $$ Commented by mathmax by abdo…
Question Number 77234 by TawaTawa last updated on 04/Jan/20 Answered by mr W last updated on 04/Jan/20 $$=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\frac{\mathrm{1}}{\mathrm{2}}} {x}^{\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{3}}} {x}^{\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{3}}×\frac{\mathrm{1}}{\mathrm{4}}} {x}^{\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{3}}×\frac{\mathrm{1}}{\mathrm{4}}×\frac{\mathrm{1}}{\mathrm{5}}} …{dx} \\…
Question Number 142745 by iloveisrael last updated on 05/Jun/21 Commented by MJS_new last updated on 05/Jun/21 $$\mathrm{vr}×\mathrm{th7gr}\:\mathrm{bl}\theta\mathrm{p}\:\mathrm{njk}\Pi\mathrm{y}\notin\mathrm{m}\:\mathrm{trf}\digamma\mathrm{sh5jk}\:\left[\spadesuit>{bkl}\right. \\ $$ Commented by iloveisrael last updated on…
Question Number 142721 by mathlove last updated on 04/Jun/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}}{\:\sqrt{\mathrm{1}−\mathrm{cos}\:{x}}}=? \\ $$ Answered by Ar Brandon last updated on 04/Jun/21 $$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}}{\:\sqrt{\mathrm{1}−\mathrm{cosx}}}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}}{\:\sqrt{\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\right)}}=\underset{\mathrm{x}\rightarrow\mathrm{0}}…
Question Number 77182 by jagoll last updated on 04/Jan/20 $$ \\ $$$$ \\ $$$$\mathrm{evaluate}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\underset{\mathrm{a}} {\overset{\mathrm{x}} {\int}}\left(\frac{\mathrm{cos}\:\mathrm{t}}{\mathrm{t}}\right)\mathrm{dt}}{\mathrm{x}}\:. \\ $$ Commented by mathmax by abdo last…
Question Number 142627 by rs4089 last updated on 03/Jun/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 11549 by Nayon last updated on 28/Mar/17 $$\:\:\:\: \\ $$$${proof} \\ $$$${lim} \\ $$$${h}\rightarrow\mathrm{0}^{\frac{{x}^{{h}} −\mathrm{1}}{{h}}={ln}\left({x}\right)} \\ $$ Answered by mrW1 last updated on…
Question Number 76995 by aliesam last updated on 02/Jan/20 Terms of Service Privacy Policy Contact: info@tinkutara.com