Menu Close

Category: Limits

prove-that-lim-x-x-1-x-1-

Question Number 75694 by malwaan last updated on 15/Dec/19 $$\boldsymbol{{prove}}\:\boldsymbol{{that}}\: \\ $$$$\underset{\boldsymbol{{x}}\rightarrow\infty} {\boldsymbol{{lim}}}\:\boldsymbol{{x}}^{\frac{\mathrm{1}}{\boldsymbol{{x}}}} \:=\mathrm{1} \\ $$ Answered by vishalbhardwaj last updated on 15/Dec/19 $$\left({as}\:{x}\rightarrow\infty\:\mathrm{then}\:\frac{\mathrm{1}}{{x}}\:\rightarrow\:\mathrm{0}\right) \\…

Prove-that-if-lim-x-a-f-1-x-L-1-and-lim-x-a-f-2-x-L-2-then-lim-x-a-f-1-x-f-2-x-L-1-L-2-

Question Number 10094 by Tawakalitu ayo mi last updated on 23/Jan/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:\:\:\underset{{x}\rightarrow\mathrm{a}} {\mathrm{lim}}\:\:\mathrm{f}_{\mathrm{1}} \left(\mathrm{x}\right)\:=\:\mathrm{L}_{\mathrm{1}} \:\:\mathrm{and}\:\: \\ $$$$\underset{{x}\rightarrow\mathrm{a}} {\mathrm{lim}}\:\:\:\mathrm{f}_{\mathrm{2}} \left(\mathrm{x}\right)\:=\:\mathrm{L}_{\mathrm{2}} \:\mathrm{then}\:\underset{{x}\rightarrow\mathrm{a}} {\mathrm{lim}}\:\left[\mathrm{f}_{\mathrm{1}} \left(\mathrm{x}\right)+\mathrm{f}_{\mathrm{2}} \left(\mathrm{x}\right)\right]\:=\:\mathrm{L}_{\mathrm{1}} +\mathrm{L}_{\mathrm{2}} \\…

Question-75597

Question Number 75597 by aliesam last updated on 13/Dec/19 Commented by mathmax by abdo last updated on 13/Dec/19 $${let}\:{f}\left({x}\right)=\frac{\left({cosx}\right)^{\frac{\mathrm{1}}{{m}}} −\left({cosx}\right)^{\frac{\mathrm{1}}{{n}}} }{{x}^{\mathrm{2}} }\:\:{we}\:{have} \\ $$$${cosx}\:\sim\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\left({cosx}\right)^{\frac{\mathrm{1}}{{m}}}…

lim-n-i-0-n-1-n-n-i-2-

Question Number 141127 by bobhans last updated on 16/May/21 $$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{i}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\:\frac{{n}}{\left({n}+{i}\right)^{\mathrm{2}} }\:=?\: \\ $$ Answered by Ar Brandon last updated on 16/May/21 $$\mathscr{L}=\underset{\mathrm{n}\rightarrow\infty}…

Question-141124

Question Number 141124 by iloveisrael last updated on 16/May/21 Answered by bobhans last updated on 16/May/21 Answered by EDWIN88 last updated on 16/May/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{cos}\:\left(\mathrm{sin}\:\mathrm{x}\right)+\sqrt{\mathrm{x}^{\mathrm{4}}…

lim-x-0-1-x-1-sin-x-3-sin-3x-

Question Number 75553 by aliesam last updated on 12/Dec/19 $$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{1}}{{x}}\left(\frac{\mathrm{1}}{{sin}\left({x}\right)}−\frac{\mathrm{3}}{{sin}\left(\mathrm{3}{x}\right)}\right) \\ $$ Commented by mathmax by abdo last updated on 12/Dec/19 $${f}\left({x}\right)=\frac{{sin}\left(\mathrm{3}{x}\right)−\mathrm{3}{sinx}}{{x}\:{sin}\left({x}\right){sin}\left(\mathrm{3}{x}\right)}\:\:{we}\:{have}\:{sinx}=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}}…