Menu Close

Category: Limits

Question-195772

Question Number 195772 by dimentri last updated on 10/Aug/23 $$\:\:\:\:\cancel{\underline{\underbrace{ }}}\:\cancel{ } \\ $$ Answered by MM42 last updated on 10/Aug/23 $${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{3}}} \:\:\frac{{cos}\frac{\mathrm{3}{x}}{\mathrm{2}}\:−\mathrm{2}{cos}\frac{\mathrm{3}{x}}{\mathrm{2}}×{sin}\frac{\mathrm{3}{x}}{\mathrm{2}}}{\mathrm{4}{cos}\frac{\mathrm{3}{x}}{\mathrm{2}}{sin}\frac{\mathrm{3}{x}}{\mathrm{2}}{cos}\mathrm{3}{x}} \\ $$$$={lim}_{{x}\rightarrow\frac{\pi}{\mathrm{3}}}…

a-i-b-i-x-i-be-reals-for-i-1-2-3-n-such-that-i-1-n-a-i-x-i-0-Prove-that-i-1-n-x-i-2-i-1-n-a-i-2-i-1-n-b-i-2-i-1-n-a-i-b-i-2-i-1-n-a-i-2-

Question Number 195569 by York12 last updated on 05/Aug/23 $${a}_{{i}} ,{b}_{{i}} ,{x}_{{i}} {be}\:{reals}\:{for}\:{i}=\mathrm{1},\mathrm{2},\mathrm{3},…,{n},\:{such}\:{that} \\ $$$$\sum_{{i}=\mathrm{1}} ^{{n}} \left[{a}_{{i}} {x}_{{i}} \right]=\mathrm{0}.\:{Prove}\:{that} \\ $$$$\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{x}_{{i}} ^{\mathrm{2}} \right]\right)\left(\underset{{i}=\mathrm{1}}…

calcu-late-lim-x-pi-2-sin-x-tan-2-x-determinant-

Question Number 195401 by mnjuly1970 last updated on 01/Aug/23 $$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{calc}\underset{\underset{\Downarrow} {\Downarrow}} {\mathrm{u}late} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{lim}_{\:\mathrm{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\left(\:\:\mathrm{sin}\left(\mathrm{x}\:\right)\right)^{\:\mathrm{tan}^{\:\mathrm{2}} \left(\mathrm{x}\:\right)} \:\:\:\:=\:?\:\:\:\:\:\:\:\:\begin{array}{|c|c|}\\\\\hline\end{array} \\ $$$$…

Question-195395

Question Number 195395 by cortano12 last updated on 01/Aug/23 Answered by kapoorshah last updated on 01/Aug/23 $${Any}\:{number}\:{power}\:\mathrm{0}\:{is}\:\mathrm{1} \\ $$$$ \\ $$$$\left(\mathrm{1}\:+\:\infty\:+\:\infty\:+\:…\:+\:\infty\right)^{\mathrm{0}} \:=\:\mathrm{1} \\ $$ Terms…

prove-that-lim-x-pi-2-tan-x-2-1-x-pi-2-1-

Question Number 195325 by mathlove last updated on 30/Jul/23 $${prove}\:{that} \\ $$$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{{tan}\left(\frac{{x}}{\mathrm{2}}\right)−\mathrm{1}}{{x}−\frac{\pi}{\mathrm{2}}}=\mathrm{1} \\ $$ Answered by BaliramKumar last updated on 30/Jul/23 $$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\frac{\mathrm{d}}{\mathrm{dx}}\left({tan}\left(\frac{{x}}{\mathrm{2}}\right)−\mathrm{1}\right)}{\frac{\mathrm{d}}{\mathrm{dx}}\left({x}−\frac{\pi}{\mathrm{2}}\right)}\:=\:\frac{\mathrm{sec}^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)\centerdot\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{1}}…