Question Number 73223 by malwaan last updated on 08/Nov/19 $$\boldsymbol{{lim}}\:\frac{\mathrm{0}}{\infty}\:\overset{?} {=}\:\mathrm{0}\:? \\ $$$$\boldsymbol{{lim}}\:\frac{\infty}{\mathrm{0}}\:\overset{?} {=}\:\infty\:? \\ $$ Commented by MJS last updated on 08/Nov/19 $$\mathrm{these}\:\mathrm{are}\:\mathrm{not}\:\mathrm{of}\:\mathrm{correct}\:\mathrm{syntax}\:\Rightarrow\:\mathrm{we}\:\mathrm{cannot} \\…
Question Number 73200 by aliesam last updated on 07/Nov/19 $${if}\:\: \\ $$$$ \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}f}\left({x}\right)=+\infty \\ $$$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{−} } {{lim}f}\left({x}\right)=+\infty \\ $$$$ \\…
Question Number 138734 by Ajaypareek last updated on 17/Apr/21 Commented by Ajaypareek last updated on 17/Apr/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 138735 by SanyamJoshi last updated on 17/Apr/21 Answered by Ajaypareek last updated on 17/Apr/21 $$\mathrm{1} \\ $$ Answered by bramlexs22 last updated on…
Question Number 138708 by liberty last updated on 16/Apr/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}−\mathrm{tan}\:{x}}{\left(\sqrt[{\mathrm{3}}]{\mathrm{1}+{x}^{\mathrm{2}} }−\mathrm{1}\right)\left(\sqrt{\mathrm{1}+\mathrm{sin}\:{x}}−\mathrm{1}\right)}=? \\ $$ Answered by bramlexs22 last updated on 17/Apr/21 Terms of Service Privacy…
Question Number 73117 by aliesam last updated on 06/Nov/19 Commented by mathmax by abdo last updated on 06/Nov/19 $${we}\:{have}\:{cos}\left(\mathrm{3}{x}\right)\sim\mathrm{1}−\frac{\left(\mathrm{3}{x}\right)^{\mathrm{2}} }{\mathrm{2}}\:\:\left({x}\rightarrow\mathrm{0}\right)\:\Rightarrow{cos}\left(\mathrm{3}{x}\right)−\mathrm{1}\:\sim−\frac{\mathrm{9}{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow \\ $$$$\mathrm{1}−{cos}\left(\mathrm{3}{x}\right)\sim\frac{\mathrm{9}{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\frac{\mathrm{1}−{cos}\left(\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} }\sim\frac{\mathrm{9}}{\mathrm{2}}\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}}…
Question Number 138603 by Ar Brandon last updated on 15/Apr/21 $$\frac{\mathrm{1}}{\mathrm{2}\pi\mathrm{i}}\underset{\mathrm{T}\rightarrow\infty} {\mathrm{lim}}\underset{\gamma−\mathrm{iT}} {\overset{\gamma+\mathrm{iT}} {\int}}\frac{\mathrm{e}^{\mathrm{st}} }{\mathrm{s}−\mathrm{a}}\mathrm{ds} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 138576 by liberty last updated on 15/Apr/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\mathrm{cot}\:\mathrm{2}{x}\right)^{\mathrm{2tan}\:\mathrm{2}{x}} \:=?\: \\ $$ Answered by phanphuoc last updated on 15/Apr/21 $${li}\underset{{u}\left({x}\right)−>\mathrm{0}} {{m}}\left(\mathrm{1}+{u}\left({x}\right)\right)^{\mathrm{1}/{u}\left({x}\right)} ={e} \\…
Question Number 7501 by Yozzia last updated on 01/Sep/16 $${Compute}\:\underset{{A}\rightarrow+\infty} {\mathrm{lim}}\left\{\frac{\mathrm{1}}{{A}}\int_{\mathrm{1}} ^{{A}} {A}^{\frac{\mathrm{1}}{{x}}} {dx}\right\}. \\ $$$$\left({IMC}\:\mathrm{2015}\right) \\ $$ Answered by FilupSmith last updated on 01/Sep/16…
Question Number 138571 by bemath last updated on 15/Apr/21 $$\begin{cases}{{u}_{\mathrm{1}} =\mathrm{1}}\\{{u}_{{n}+\mathrm{1}} =\:\frac{{n}^{\mathrm{2}} −{n}+\mathrm{1}}{{n}^{\mathrm{2}} }}\end{cases}\:;\:\forall{n}\in\mathbb{R} \\ $$$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{u}_{{n}} \:=? \\ $$ Answered by mathmax by abdo…