Menu Close

Category: Limits

l-x-0-im-x-sin-x-x-2-e-x-1-

Question Number 6703 by love math last updated on 15/Jul/16 $$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{l}im}\frac{{x}−\mathrm{sin}\:{x}}{{x}^{\mathrm{2}} \left({e}^{{x}} −\mathrm{1}\right)} \\ $$ Answered by FilupSmith last updated on 15/Jul/16 $${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}−\mathrm{sin}\:{x}}{{x}^{\mathrm{2}}…

limit-1-1-1-x-x-

Question Number 6689 by Tawakalitu. last updated on 13/Jul/16 $${limit}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{1}\:−\:{x}} \\ $$$${x}\:\dashrightarrow\:\infty \\ $$ Answered by FilupSmith last updated on 14/Jul/16 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}−{x}}\:=\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}−\infty} \\ $$$$=\mathrm{1}−\frac{\mathrm{1}}{\infty}…

limit-1-1-x-1-x-

Question Number 6692 by Tawakalitu. last updated on 14/Jul/16 $${limit}\:\:\:\:\:\:\:\:\mathrm{1}\:+\:\frac{\mathrm{1}}{{x}\:−\:\mathrm{1}} \\ $$$${x}\:\rightarrow\:\infty \\ $$ Answered by FilupSmith last updated on 14/Jul/16 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{1}+\frac{\mathrm{1}}{{x}−\mathrm{1}}=\mathrm{1}+\frac{\mathrm{1}}{\infty−\mathrm{1}} \\ $$$$=\mathrm{1}+\frac{\mathrm{1}}{\infty}…

Question-72218

Question Number 72218 by aliesam last updated on 26/Oct/19 Commented by turbo msup by abdo last updated on 26/Oct/19 $${let}\:{A}\left({x}\right)=\left(\frac{{sinx}}{{x}}\right)^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \:\Rightarrow \\ $$$${A}\left({x}\right)={e}^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }{ln}\left(\frac{{sinx}}{{x}}\right)}…

lim-x-0-cos-2x-sin-x2-

Question Number 6668 by janzmir6996 last updated on 10/Jul/16 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}cos}\:\mathrm{2}{x}/\mathrm{sin}\:{x}\mathrm{2} \\ $$ Commented by Rasheed Soomro last updated on 10/Jul/16 $${Do}\:{you}\:{mean}\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\mathrm{cos}\:\mathrm{2}{x}/\mathrm{sin}\:{x}^{\mathrm{2}} \:\:\:? \\…

Can-you-evaluate-lim-x-1-x-x-WolframAlpha-writes-the-answer-as-e-2i-to-pi-

Question Number 6407 by FilupSmith last updated on 26/Jun/16 $$\mathrm{Can}\:\mathrm{you}\:\mathrm{evaluate}: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(−\mathrm{1}\right)^{{x}} {x} \\ $$$$ \\ $$$$\mathrm{WolframAlpha}\:\mathrm{writes}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{as} \\ $$$$={e}^{\mathrm{2}{i}\:\:\mathrm{to}\:\:\pi} \infty \\ $$ Commented by…