Menu Close

Category: Limits

L-lim-i-1-i-1-i-i-1-L-

Question Number 4587 by FilupSmith last updated on 09/Feb/16 $${L}=\underset{{i}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left(−\mathrm{1}\right)^{{i}+\mathrm{1}} {i}}{{i}+\mathrm{1}} \\ $$$${L}=? \\ $$ Commented by Yozzii last updated on 14/Feb/16 $${L}\:{does}\:{not}\:{exist}.\:{While}\:\mid{L}\mid=\underset{{i}\rightarrow\infty} {\mathrm{lim}}\frac{{i}}{{i}+\mathrm{1}}…

k-1-k-k-1-2-8-

Question Number 135571 by bemath last updated on 14/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{k}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{8}}\:=? \\ $$ Commented by EDWIN88 last updated on 14/Mar/21 $$\mathrm{i}\:\mathrm{guess}\:\mathrm{the}\:\mathrm{series}\:\mathrm{should}\:\mathrm{be}\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{k}}{\left(\mathrm{k}^{\mathrm{2}}…

The-following-image-shows-the-functiond-f-x-xe-1-1-x-and-g-x-x-1-Can-you-explain-as-to-why-as-f-x-that-f-x-g-x-

Question Number 4281 by Filup last updated on 07/Jan/16 $$\mathrm{The}\:\mathrm{following}\:\mathrm{image}\:\mathrm{shows}\:\mathrm{the}\:\mathrm{functiond} \\ $$$${f}\left({x}\right)={xe}^{\frac{\mathrm{1}}{\mathrm{1}−{x}}} \:\:\:\:\:\:\:\:\mathrm{and}\:\:\:\:\:\:{g}\left({x}\right)={x}−\mathrm{1} \\ $$$$ \\ $$$$\mathrm{Can}\:\mathrm{you}\:\mathrm{explain}\:\mathrm{as}\:\mathrm{to}\:\mathrm{why}\:\mathrm{as}\:\mid{f}\left({x}\right)\mid\rightarrow\infty, \\ $$$$\mathrm{that}\:{f}\left({x}\right)\rightarrow{g}\left({x}\right). \\ $$ Commented by Filup last…

Question-69710

Question Number 69710 by ahmadshahhimat775@gmail.com last updated on 26/Sep/19 Commented by mathmax by abdo last updated on 27/Sep/19 $${we}\:{have}\:{x}^{\mathrm{2}} −\mathrm{6}{x}\:+\mathrm{5}\:={x}^{\mathrm{2}} −{x}\:−\mathrm{5}\left({x}−\mathrm{1}\right)={x}\left({x}−\mathrm{1}\right)−\mathrm{5}\left({x}−\mathrm{1}\right) \\ $$$$=\left({x}−\mathrm{1}\right)\left({x}−\mathrm{5}\right) \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\mathrm{1}}…

Question-69709

Question Number 69709 by ahmadshahhimat775@gmail.com last updated on 26/Sep/19 Commented by kaivan.ahmadi last updated on 26/Sep/19 $${lim}_{{x}\rightarrow\infty} \frac{\mathrm{2}{x}}{\mathrm{3}^{{x}} {ln}\mathrm{3}}={lim}_{{x}\rightarrow\infty} \frac{\mathrm{2}}{\mathrm{3}^{{x}} \left({ln}\mathrm{3}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$ Commented…