Menu Close

Category: Limits

lim-x-cos-x-2-cos-x-4-cos-x-2-n-

Question Number 129731 by Adel last updated on 18/Jan/21 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}cos}\:\frac{\mathrm{x}}{\mathrm{2}}×\mathrm{cos}\:\frac{\mathrm{x}}{\mathrm{4}}…….\mathrm{cos}\:\frac{\mathrm{x}}{\mathrm{2}^{\mathrm{n}} }=? \\ $$ Answered by Dwaipayan Shikari last updated on 18/Jan/21 $${cos}\frac{{x}}{\mathrm{2}}=\frac{{sinx}}{\mathrm{2}{sin}\frac{{x}}{\mathrm{2}}} \\ $$$$\underset{{n}=\mathrm{1}}…

lim-x-log-x-2021x-log-x-pi-iberty-

Question Number 129655 by liberty last updated on 17/Jan/21 $$\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{log}\:_{{x}} \left(\mathrm{2021}{x}\right)\right)^{\mathrm{log}\:{x}} \:=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\lceil\ast\rceil\left(\sqrt{\pi^{\ell\mathrm{iberty}} }\:\right) \\ $$ Answered by bemath last updated on 17/Jan/21…

lim-x-0-sin-x-arctan-x-x-2-1-cos-x-2-

Question Number 129584 by bemath last updated on 16/Jan/21 $$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{sin}\:\mathrm{x}\right)\left(\mathrm{arctan}\:\mathrm{x}\right)−\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{cos}\:\left(\mathrm{x}^{\mathrm{2}} \right)}=? \\ $$ Answered by liberty last updated on 16/Jan/21 $$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}+\frac{\mathrm{x}^{\mathrm{5}}…

lim-x-1-1-x-x-

Question Number 129587 by Adel last updated on 16/Jan/21 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{x}} =? \\ $$ Answered by Dwaipayan Shikari last updated on 16/Jan/21 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)^{{x}} =\underset{{x}\rightarrow\infty}…

Question-64047

Question Number 64047 by aliesam last updated on 12/Jul/19 Commented by mathmax by abdo last updated on 12/Jul/19 $${we}\:{have}\:{x}_{\mathrm{0}} =\mathrm{1}\:{and}\:{x}_{{n}+\mathrm{1}} =\frac{\mathrm{3}+\mathrm{2}{x}_{{n}} }{\mathrm{3}+{x}_{{n}} }\:\Rightarrow{x}_{{n}+\mathrm{1}} ={f}\left({x}_{{n}} \right)\:{with}…