Menu Close

Category: Limits

lim-x-pi-2-cos-4-x-1-3-1-sin-x-2-3-

Question Number 116039 by bobhans last updated on 30/Sep/20 $$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}\:}]{\mathrm{cos}\:^{\mathrm{4}} \left({x}\right)}}{\left(\mathrm{1}−\mathrm{sin}\:\left({x}\right)\right)^{\frac{\mathrm{2}}{\mathrm{3}}} }\:? \\ $$ Answered by Dwaipayan Shikari last updated on 30/Sep/20 $$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\frac{\left(\mathrm{cosx}\right)^{\frac{\mathrm{4}}{\mathrm{3}}}…

lim-x-pi-2-cos-x-1-sin-x-2-3-

Question Number 116029 by bemath last updated on 30/Sep/20 $$\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}}{\left(\mathrm{1}−\mathrm{sin}\:{x}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} }\:=?\: \\ $$ Answered by bobhans last updated on 30/Sep/20 $${set}\:{x}\:=\:\frac{\pi}{\mathrm{2}}\:+\:{z} \\ $$$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{sin}\:{z}}{\left(\mathrm{1}−\mathrm{cos}\:{z}\right)^{\frac{\mathrm{2}}{\mathrm{3}}}…

Reposting-question-181462-lim-n-2-3-1-3-4-1-4-n-1-n-1-n-2n-1-1-n-1-1-2e-

Question Number 181553 by Frix last updated on 26/Nov/22 $$\mathrm{Reposting}\:\mathrm{question}\:\mathrm{181462} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt[{{n}}]{\sqrt{\mathrm{2}!}×\sqrt[{\mathrm{3}}]{\mathrm{3}!}×\sqrt[{\mathrm{4}}]{\mathrm{4}!}×…×\sqrt[{{n}}]{{n}!}}}{\:\sqrt[{{n}+\mathrm{1}}]{\left(\mathrm{2}{n}+\mathrm{1}\right)!!}}\overset{?} {=}\frac{\mathrm{1}}{\mathrm{2e}} \\ $$ Answered by aleks041103 last updated on 26/Nov/22 $${b}_{{n}} =\frac{\sqrt[{{n}}]{\sqrt{\mathrm{2}!}×\sqrt[{\mathrm{3}}]{\mathrm{3}!}×\sqrt[{\mathrm{4}}]{\mathrm{4}!}×…×\sqrt[{{n}}]{{n}!}}}{\:\sqrt[{{n}+\mathrm{1}}]{\left(\mathrm{2}{n}+\mathrm{1}\right)!!}}=\sqrt[{{n}}]{\frac{\sqrt{\mathrm{2}!}×\sqrt[{\mathrm{3}}]{\mathrm{3}!}×\sqrt[{\mathrm{4}}]{\mathrm{4}!}×…×\sqrt[{{n}}]{{n}!}}{\left(\left(\mathrm{2}{n}+\mathrm{1}\right)!!\right)^{\frac{{n}}{{n}+\mathrm{1}}}…

lim-x-0-d-dx-0-x-sin-t-3-dt-2x-4-

Question Number 116019 by bemath last updated on 30/Sep/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{{d}}{{dx}}\:\underset{\mathrm{0}} {\overset{{x}} {\int}}\:\mathrm{sin}\:\left({t}^{\mathrm{3}} \right)\:{dt}}{\mathrm{2}{x}^{\mathrm{4}} }\:? \\ $$ Commented by bemath last updated on 30/Sep/20 $$\underset{{x}\rightarrow\mathrm{0}}…

advanced-mathematics-prove-that-lim-x-1-x-1-x-1-Euler-mascheroni-constant-m-n-huly-1970-

Question Number 116005 by mnjuly1970 last updated on 30/Sep/20 $$\:\:\:\:\:\:\:\:\:…\:{advanced}\:\:{mathematics}… \\ $$$$ \\ $$$$\:\:\:\:\:{prove}\:\:{that}::: \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{lim}_{{x}\rightarrow\mathrm{1}^{+} } \left(\:\zeta\left(\:{x}\:\right)\:−\frac{\mathrm{1}}{{x}\:−\:\mathrm{1}}\right)\:\overset{???} {=}\gamma\:\:\: \\ $$$$\:\:\gamma::\:\mathscr{E}{uler}\:−\:{mascheroni}\:{constant}. \\ $$$$…

lim-x-0-1-cos-x-cos-2x-cos-3x-1-3-cos-4x-1-4-x-2-

Question Number 115999 by bemath last updated on 30/Sep/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}\:\sqrt{\mathrm{cos}\:\mathrm{2}{x}}\:\sqrt[{\mathrm{3}\:}]{\mathrm{cos}\:\mathrm{3}{x}}\:\sqrt[{\mathrm{4}\:}]{\mathrm{cos}\:\mathrm{4}{x}}}{{x}^{\mathrm{2}} } \\ $$ Answered by bobhans last updated on 30/Sep/20 $${short}\:{cut}\:'{mr}\:{john}\:{santu}\:' \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}\:\sqrt{\mathrm{cos}\:\mathrm{2}{x}}\:\sqrt[{\mathrm{3}\:}]{\mathrm{cos}\:\mathrm{3}{x}}\:\sqrt[{\mathrm{4}\:}]{\mathrm{cos}\:\mathrm{4}{x}}}{{x}^{\mathrm{2}}…

Question-181462

Question Number 181462 by mathlove last updated on 25/Nov/22 Commented by Frix last updated on 26/Nov/22 $$\mathrm{I}\:\mathrm{think}\:\mathrm{it}'\mathrm{s}\:\frac{\mathrm{1}}{\mathrm{2e}}\:\mathrm{but}\:\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{100\%}\:\mathrm{sure} \\ $$$$\mathrm{Can}\:\mathrm{someone}\:\mathrm{confirm}\:\mathrm{this}? \\ $$ Answered by SEKRET last…