Menu Close

Category: Limits

lim-x-a-2-x-a-tan-pix-2a-

Question Number 115541 by bobhans last updated on 26/Sep/20 $$\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\left(\mathrm{2}−\frac{{x}}{{a}}\right)^{\mathrm{tan}\:\left(\frac{\pi{x}}{\mathrm{2}{a}}\right)} =? \\ $$ Answered by bemath last updated on 26/Sep/20 $${L}\:=\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\left(\mathrm{2}−\frac{{x}}{{a}}\right)^{\mathrm{tan}\:\left(\frac{\pi{x}}{\mathrm{2}{a}}\right)} \\ $$$$\mathrm{ln}\:{L}=\underset{{x}\rightarrow{a}}…

prove-that-a-r-1-r-1-

Question Number 49817 by Aditya789 last updated on 11/Dec/18 $$\mathrm{prove}\:\mathrm{that}.\:\frac{\mathrm{a}^{\mathrm{r}} −\mathrm{1}}{\mathrm{r}}=\mathrm{1} \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18 $${what}\:{is}\:{the}\:{relation}\:{between}\:{a}\:{and}\:{r}…{question} \\ $$$${not}\:{clear}… \\ $$…

1-lim-x-0-1-cos-6-2x-cos-3-3x-3x-2-2-lim-x-0-1-cos-4x-2sin-2-x-cos-4x-x-2-cos-3x-3-lim-x-pi-2-sin-x-2cos-2-x-1-sin-3-x-sin-x-

Question Number 115320 by john santu last updated on 25/Sep/20 $$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:^{\mathrm{6}} \left(\mathrm{2}{x}\right)\mathrm{cos}\:^{\mathrm{3}} \left(\mathrm{3}{x}\right)}{\mathrm{3}{x}^{\mathrm{2}} }\:? \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{4}{x}+\mathrm{2sin}\:^{\mathrm{2}} {x}.\mathrm{cos}\:\mathrm{4}{x}}{{x}^{\mathrm{2}} .\mathrm{cos}\:\mathrm{3}{x}}? \\ $$$$\left(\mathrm{3}\right)\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}−\mathrm{2cos}\:^{\mathrm{2}} {x}−\mathrm{1}}{\:\sqrt{\mathrm{sin}\:^{\mathrm{3}} {x}}−\sqrt{\mathrm{sin}\:{x}}}\:?\:…

lim-x-0-xsin-x-2sin-2-3x-x-2-cos-x-

Question Number 115318 by bemath last updated on 25/Sep/20 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\mathrm{sin}\:{x}}{\mathrm{2sin}\:^{\mathrm{2}} \left(\mathrm{3}{x}\right)−{x}^{\mathrm{2}} \mathrm{cos}\:{x}} \\ $$ Answered by bobhans last updated on 25/Sep/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\:\mathrm{sin}\:{x}}{\mathrm{2}\:\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{3}{x}\right)−{x}^{\mathrm{2}}…