Menu Close

Category: Logic

In-a-great-reunion-each-person-knows-at-least-two-different-persons-in-there-Show-that-this-statement-implies-that-exists-one-person-who-has-to-know-everyone-

Question Number 6464 by nburiburu last updated on 27/Jun/16 $$“{In}\:{a}\:{great}\:{reunion}\:{each}\:{person}\:{knows} \\ $$$${at}\:{least}\:{two}\:{different}\:{persons}\:{in}\:{there}''.\:{Show}\: \\ $$$${that}\:{this}\:{statement}\:{implies}\:{that}\:{exists} \\ $$$${one}\:{person}\:{who}\:{has}\:{to}\:{know}\:{everyone}. \\ $$ Commented by prakash jain last updated on…

Question-71849

Question Number 71849 by device4438043516@gmail.com last updated on 23/May/20 $$ \\ $$ Answered by MJS last updated on 21/Oct/19 $${P}\:\:\:{Q}\:\:{P}\Rightarrow{Q}\:\:{P}\wedge{Q}\:\:{P}\wedge{Q}={P} \\ $$$$\mathrm{1}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1} \\ $$$$\mathrm{1}\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0} \\…

eqution-

Question Number 5450 by 3 last updated on 15/May/16 $${eqution} \\ $$ Answered by FilupSmith last updated on 15/May/16 $${ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$$\mathrm{is}\:\mathrm{an}\:\mathrm{equation}\:\mathrm{with}\:\mathrm{solution}: \\ $$$${x}=\frac{−{b}\pm\sqrt{{b}^{\mathrm{2}}…

Prove-that-f-x-x-a-cos-x-b-has-at-least-one-real-root-for-a-b-R-

Question Number 70742 by Joel122 last updated on 07/Oct/19 $$\mathrm{Prove}\:\mathrm{that}\:{f}\left({x}\right)\:=\:{x}\:−\:{a}\:\mathrm{cos}\:\left({x}\right)\:−\:{b} \\ $$$$\mathrm{has}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{real}\:\mathrm{root}\:\mathrm{for}\:\forall{a},{b}\:\in\:\mathbb{R} \\ $$ Commented by kaivan.ahmadi last updated on 07/Oct/19 $${x}−{acosx}−{b}=\mathrm{0}\Rightarrow{x}−{b}={acosx} \\ $$$${y}_{\mathrm{1}} ={x}−{b}…

Function-is-a-b-a-b-AB-a-b-4-b-4-4-b-b-a-1-a-1-2-b-2-a-3-Function-is-a-b-sin-a-b-a-b-sin-a-b-a-b-1-b-5-a-4-9-a-b-9-b-a-Funcion-is-sin-a-sin-b-sin-1-a-sin-1-b-a-b-sin-a-sin-b-

Question Number 4790 by Dnilka228 last updated on 10/Mar/16 $${Function}\:\Gamma\:{is}\:{a}+{b} \\ $$$${a}+{b}={AB} \\ $$$${a}\neq{b}−\mathrm{4} \\ $$$${b}−\mathrm{4}=\mathrm{4}+{b} \\ $$$${b}={a}−\mathrm{1} \\ $$$${a}−\mathrm{1}=\mathrm{2} \\ $$$${b}=\mathrm{2} \\ $$$${a}=\mathrm{3} \\…

Prove-or-disprove-that-as-time-goes-by-the-influence-of-the-past-on-the-present-diminishes-I-met-this-idea-in-an-informal-analysis-of-the-origins-of-equilibrium-probabilities-found-for-the-tra

Question Number 4621 by Yozzii last updated on 14/Feb/16 $${Prove}\:{or}\:{disprove}\:{that}\:,\:{as}\:{time}\:{goes}\:{by}, \\ $$$${the}\:{influence}\:{of}\:{the}\:{past}\:{on}\:{the}\: \\ $$$${present}\:{diminishes}.\: \\ $$$$\left({I}\:{met}\:{this}\:{idea}\:{in}\:{an}\:{informal}\right. \\ $$$${analysis}\:{of}\:{the}\:{origins}\:{of}\:{equilibrium}\: \\ $$$${probabilities}\:{found}\:{for}\:{the}\:{transition} \\ $$$$\left.{matrix}\:{of}\:{a}\:{Markov}\:{chain}\:{scenario}.\right) \\ $$ Commented…

An-online-trading-company-wants-to-offer-discounts-to-customers-The-company-has-recently-emailed-the-discount-codes-to-customers-New-customers-must-have-the-code-to-be-eligible-but-returning-cust

Question Number 135348 by nadovic last updated on 12/Mar/21 $$\mathrm{An}\:\mathrm{online}\:\mathrm{trading}\:\mathrm{company}\:\mathrm{wants}\:\mathrm{to} \\ $$$$\mathrm{offer}\:\mathrm{discounts}\:\mathrm{to}\:\mathrm{customers}.\:\mathrm{The}\: \\ $$$$\mathrm{company}\:\mathrm{has}\:\mathrm{recently}\:\mathrm{emailed}\:\mathrm{the} \\ $$$$\mathrm{discount}\:\mathrm{codes}\:\mathrm{to}\:\mathrm{customers}.\:\mathrm{New}\: \\ $$$$\mathrm{customers}\:\mathrm{must}\:\mathrm{have}\:\mathrm{the}\:\mathrm{code}\:\mathrm{to}\:\mathrm{be}\: \\ $$$$\mathrm{eligible}\:\mathrm{but}\:\mathrm{returning}\:\mathrm{customers}\:\mathrm{are} \\ $$$$\mathrm{not}\:\mathrm{eligible}\:\mathrm{for}\:\mathrm{the}\:\mathrm{discount}. \\ $$$$\:\:\:\:\:\:{Let}\:\:\:{A}\:−\:{Returning}\:{Customer} \\…