Menu Close

Category: Mensuration

Question-50936

Question Number 50936 by Rio Michael last updated on 22/Dec/18 Commented by Rio Michael last updated on 22/Dec/18 $${the}\:{figure}\:{above}\:{is}\:{a}\:{solid}\:{with}\:{trapezium}\:{PQRS}\:{as}\:{its}\:{uniform} \\ $$$${cross}−{section}. \\ $$$$\left.{a}\right)\:{Find}\:{the}\:{area}\:{of}\:{the}\:{trapezuim}\:{PQRS} \\ $$$$\left.{b}\right)\:{calculate}\:{the}\:{volume}\:{of}\:{the}\:{solid}\:{figure}.…

If-a-right-angled-triangle-has-same-area-and-double-perimeter-as-that-of-a-circle-of-unit-radius-find-the-mutually-perpendicular-sides-of-the-triangle-

Question Number 50818 by ajfour last updated on 20/Dec/18 $${If}\:{a}\:{right}\:{angled}\:{triangle}\:{has} \\ $$$${same}\:{area}\:{and}\:{double}\:{perimeter} \\ $$$${as}\:{that}\:{of}\:{a}\:{circle}\:{of}\:{unit}\:{radius}, \\ $$$${find}\:{the}\:{mutually}\:{perpendicular} \\ $$$${sides}\:{of}\:{the}\:{triangle}. \\ $$ Answered by mr W last…

Question-50640

Question Number 50640 by ajfour last updated on 18/Dec/18 Commented by mr W last updated on 18/Dec/18 $${when}\:{the}\:{angle}\:{between}\:{k}\:{and}\:{h}\:{is} \\ $$$${fixed},\:{then}\:{the}\:{shape}\:{and}\:{therefore} \\ $$$${also}\:{the}\:{area}\:{of}\:{the}\:{quadrilateral}\:{is} \\ $$$${fixed}.\:{the}\:{area}\:{is}\:{a}\:{constant}. \\…

Question-50630

Question Number 50630 by peter frank last updated on 18/Dec/18 Answered by ajfour last updated on 18/Dec/18 $$\alpha+\beta\:=\:\mathrm{0}\:\:,\:\gamma+\delta\:=\:−{b}\:\:\:\:…\left({i}\right) \\ $$$$\alpha\beta+\left(\alpha+\beta\right)\gamma+\gamma\delta+\left(\alpha+\beta\right)\delta\:=\:{c} \\ $$$$\Rightarrow\:\:\alpha\beta+\gamma\delta\:=\:{c}\:\:\:\:\:\:\:\:\:\:\:….\left({ii}\right) \\ $$$$\alpha\beta.\gamma\delta\:=\:{e}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….\left({iii}\right) \\…

Solve-the-differential-equation-a-x-x-y-dy-dx-x-2-xy-3y-2-b-y-xy-2-x-dy-dx-0-c-x-2-d-2-y-dx-2-2x-dy-dx-2-2x-2-1-y-24x-3-given-that-dy-dx-6-d-2-y-dx-2-0-

Question Number 50140 by peter frank last updated on 14/Dec/18 $${Solve}\:{the}\:{differential} \\ $$$${equation} \\ $$$$\left.{a}\right){x}\left({x}+{y}\right)\frac{{dy}}{{dx}}={x}^{\mathrm{2}} +{xy}−\mathrm{3}{y}^{\mathrm{2}} \\ $$$$\left.{b}\right){y}+{xy}^{\mathrm{2}} −{x}\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$${c}\:\left[\:\:{x}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}\:} }−\mathrm{2}{x}\frac{{dy}}{{dx}}+\mathrm{2}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right){y}=\mathrm{24}{x}^{\mathrm{3}}…

Question-50065

Question Number 50065 by peter frank last updated on 13/Dec/18 Answered by math1967 last updated on 13/Dec/18 $${y}^{\mathrm{2}} =\mathrm{4}{ax}\:\therefore{x}=\frac{{y}^{\mathrm{2}} }{\mathrm{4}{a}} \\ $$$${now}\:{lx}+{my}+{n}=\mathrm{0} \\ $$$$\Rightarrow\frac{{ly}^{\mathrm{2}} }{\mathrm{4}{a}}\:+{my}+{n}=\mathrm{0}…

Question-50047

Question Number 50047 by peter frank last updated on 13/Dec/18 Answered by peter frank last updated on 13/Dec/18 $$\mathrm{P}=\left(\mathrm{acos}\theta,\mathrm{bsin}\theta\right) \\ $$$$\mathrm{Q}=\left(-\mathrm{asin}\theta,\mathrm{bcos}\theta\right) \\ $$$$\mathrm{O}=\left(\mathrm{0},\mathrm{0}\right) \\ $$$$\mathrm{L}^{\mathrm{2}}…