Question Number 223066 by fantastic last updated on 13/Jul/25 Commented by fantastic last updated on 13/Jul/25 $${Area}\:{of}\:{semicircle}\:{in}\:{terms}\:{of}\:{a}\:{and}\:{b} \\ $$$$ \\ $$ Answered by mr W…
Question Number 222800 by fantastic last updated on 07/Jul/25 Answered by mr W last updated on 07/Jul/25 $$\mathrm{2}×\frac{\pi{a}^{\mathrm{2}} }{\mathrm{6}}−\frac{\sqrt{\mathrm{3}}{a}^{\mathrm{2}} }{\mathrm{4}}=\left(\frac{\pi}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\right){a}^{\mathrm{2}} \approx\mathrm{0}.\mathrm{614}{a}^{\mathrm{2}} \\ $$ Commented by…
Question Number 222798 by fantastic last updated on 07/Jul/25 Answered by mr W last updated on 07/Jul/25 $${r}=\frac{{a}}{\mathrm{2}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{4}} \\ $$$${area}\:{of}\:{semi}\:{circle}=\frac{\pi{r}^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{3}\pi{a}^{\mathrm{2}} }{\mathrm{32}}\:\checkmark \\ $$ Terms…
Question Number 222747 by fantastic last updated on 06/Jul/25 Commented by fantastic last updated on 06/Jul/25 $${r}\:{in}\:{terms}\:{of}\:{R}\:{and}\:\alpha \\ $$ Answered by mr W last updated…
Question Number 222730 by fantastic last updated on 06/Jul/25 Commented by fantastic last updated on 06/Jul/25 $${find}\:{x}\:{in}\:{terms}\:{of}\: \\ $$$$\alpha,\beta,\gamma, \\ $$ Answered by mr W…
Question Number 222639 by Mingma last updated on 03/Jul/25 Answered by gabthemathguy25 last updated on 03/Jul/25 $$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{8}\:{cm}=\mathrm{4}\:{cm} \\ $$$$\mathrm{Slant}\:\mathrm{height}\:=\:\sqrt{\mathrm{10}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} }=\sqrt{\mathrm{100}+\mathrm{16}}=\sqrt{\mathrm{116}}\approx\mathrm{10}.\mathrm{77}\:\mathrm{cm} \\ $$$$\mathrm{cos}\left(\theta\right)=\frac{\mathrm{10}.\mathrm{77}^{\mathrm{2}} +\mathrm{10}.\mathrm{77}^{\mathrm{2}} −\mathrm{8}^{\mathrm{2}}…
Question Number 222482 by fantastic last updated on 28/Jun/25 Commented by fantastic last updated on 28/Jun/25 $${it}\:{is}\:{not}\:{the}\:{length} \\ $$$${its}\:{is}\:{representing}\:{areas} \\ $$ Answered by MathematicalUser2357 last…
Question Number 222153 by fantastic last updated on 19/Jun/25 Commented by fantastic last updated on 19/Jun/25 $${area}\:{if}\:{side}\:{length}\:{of}\:{square}\:{is}\:{a} \\ $$ Answered by mr W last updated…
Question Number 222072 by fantastic last updated on 16/Jun/25 Commented by fantastic last updated on 16/Jun/25 $${If}\:{the}\:{side}\:{length}\:{of}\:{the}\:{square}\:{is}\:{a} \\ $$$$\:{what}\:{is}\:{the}\:{overlapping}\:{area}?? \\ $$ Commented by fantastic last…
Question Number 221870 by fantastic last updated on 11/Jun/25 Answered by mehdee7396 last updated on 12/Jun/25 $${S}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}{AB}×{OM}\:\:\:\:\&\:\:\:{S}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{CD}×{ON} \\ $$$${AB}={CD}\:\:\Rightarrow{S}_{\mathrm{1}} +{S}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{AB}×\left({OM}+{ON}\right)=\frac{{AB}×{MN}}{\mathrm{2}}=\mathrm{16} \\ $$$$\Rightarrow{S}={AB}×{MN}=\mathrm{32}…