Menu Close

Category: Mensuration

Question-47010

Question Number 47010 by ajfour last updated on 03/Nov/18 Commented by ajfour last updated on 03/Nov/18 $${Find}\:{maximum}\:{rectangular} \\ $$$${area}\:{and}\:\boldsymbol{{l}}\:\&\:\boldsymbol{{h}}\:\left({then}\right),\:{in}\:{terms} \\ $$$${of}\:{sides}\:{a},{b},{c}\:\:{of}\:\bigtriangleup{ABC}. \\ $$$$\left({with}\:{QR}\:\:{along}\:{BC}\right) \\ $$…

Question-112467

Question Number 112467 by Aina Samuel Temidayo last updated on 08/Sep/20 Answered by 1549442205PVT last updated on 08/Sep/20 $$\mathrm{Side}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}\:\mathrm{equal}\:\mathrm{to}\:\frac{\mathrm{a}}{\:\sqrt{\mathrm{2}}} \\ $$$$\mathrm{Width}\:\mathrm{of}\:\mathrm{rectangle}\:\mathrm{equal}\:\mathrm{to}\:\frac{\mathrm{2a}}{\:\sqrt{\mathrm{2}}}=\mathrm{a}\sqrt{\mathrm{2}} \\ $$$$\mathrm{The}\:\mathrm{area}\:\mathrm{of}\:\mathrm{rectangle}\:\mathrm{is}\:\mathrm{S}_{\mathrm{1}} =\mathrm{2a}.\mathrm{a}\sqrt{\mathrm{2}}=\mathrm{2a}^{\mathrm{2}} \sqrt{\mathrm{2}}\:\left(\mathrm{1}\right)…

A-chord-which-is-a-perpendicular-bisector-of-radius-of-length-18cm-in-a-circle-has-length-

Question Number 111734 by Aina Samuel Temidayo last updated on 04/Sep/20 $$\mathrm{A}\:\mathrm{chord}\:\mathrm{which}\:\mathrm{is}\:\mathrm{a}\:\mathrm{perpendicular} \\ $$$$\mathrm{bisector}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{length}\:\mathrm{18cm}\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{circle},\:\mathrm{has}\:\mathrm{length}. \\ $$$$ \\ $$ Answered by Rasheed.Sindhi last updated…

Question-177044

Question Number 177044 by Ar Brandon last updated on 30/Sep/22 Answered by a.lgnaoui last updated on 30/Sep/22 $$\Sigma\:{angles}\:{interieures}=\Sigma{angles}\:{exterieures} \\ $$$$\frac{\measuredangle{B}}{\mathrm{2}}+\measuredangle{KPD}+\frac{\measuredangle{D}}{\mathrm{2}}=\mathrm{90} \\ $$$$\measuredangle{EDD}=\frac{\measuredangle{D}}{\mathrm{2}}\:\:\:\left({PK}\mid\mid\:{ED}\right) \\ $$$$\:\frac{\measuredangle{B}}{\mathrm{2}}+\measuredangle{D}=\mathrm{90} \\…