Menu Close

Category: Mensuration

Given-that-a-b-c-are-3-consecutive-term-of-a-Geometric-sequence-f-n-show-that-log-a-logb-logc-are-the-first-3-terms-of-an-Arithmetic-SequenceP-n-

Question Number 38154 by Rio Mike last updated on 22/Jun/18 $${Given}\:{that}\: \\ $$$$\:\:{a},{b},{c}\:{are}\:\mathrm{3}\:{consecutive}\:{term}\:{of}\: \\ $$$${a}\:{Geometric}\:{sequence}\:{f}\left({n}\right)\:,\:{show} \\ $$$${that}\:{log}\:{a},{logb},{logc}\:{are}\:{the}\:{first}\: \\ $$$$\mathrm{3}\:{terms}\:{of}\:{an}\:{Arithmetic}\:{SequenceP}\left({n}\right). \\ $$ Answered by Rasheed.Sindhi last…

Question-103652

Question Number 103652 by smartsmith459@gmail.com last updated on 16/Jul/20 Commented by Worm_Tail last updated on 16/Jul/20 $$\left.\mathrm{1}\right)\:\:\:\:\alpha=\frac{\frac{\mathrm{20000}}{\mathrm{60}}−\mathrm{0}}{\mathrm{30}}=\frac{\mathrm{20000}}{\mathrm{1800}}=\mathrm{11}.\mathrm{11}{rps} \\ $$$$\left.\mathrm{2}\right)\:\:\:\theta=\omega_{\mathrm{0}} {t}+\mathrm{0}.\mathrm{5}\alpha{t}^{\mathrm{2}} \\ $$$$\:\:\:\:\theta=\left(\mathrm{0}\right)\left(\mathrm{30}\right)+\mathrm{0}.\mathrm{5}\left(\mathrm{11}.\mathrm{111}\right)\left(\mathrm{30}\right)^{\mathrm{2}} \\ $$$$\:\:\:\theta=\mathrm{5000}{rad} \\…

Question-38079

Question Number 38079 by ajfour last updated on 21/Jun/18 Commented by ajfour last updated on 21/Jun/18 $${Find}\:{coloured}\:{area}\:{ABCD}\:{in} \\ $$$${terms}\:{of}\:{a},{b},{c},{d}\:. \\ $$$${It}\:{is}\:{the}\:{area}\:{common}\:{to}\:{two} \\ $$$${squares}\:{of}\:{side}\:{length}\:{a}. \\ $$…

Question-37989

Question Number 37989 by ajfour last updated on 20/Jun/18 Commented by ajfour last updated on 20/Jun/18 $$\left({i}\right){Find}\:{area}\:{of}\:{blue}\:{square}\:{and}\: \\ $$$${red}\:{square}. \\ $$$$\left({ii}\right){Find}\:\theta\:{for}\:{which}\:{corners}\:{of} \\ $$$${red}\:{square}\:{lies}\:{on}\:{sides}\:{of}\:{blue} \\ $$$${square}.…

f-x-y-z-3x-2-y-x-3-y-3-2z-prove-that-the-function-has-a-potential-to-be-determined-

Question Number 168979 by MikeH last updated on 22/Apr/22 $${f}\left({x},{y},{z}\right)\:=\:\left(\mathrm{3}{x}^{\mathrm{2}} {y},{x}^{\mathrm{3}} +{y}^{\mathrm{3}} ,\:\mathrm{2}{z}\right) \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\:\mathrm{has}\:\mathrm{a}\:\mathrm{potential} \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{determined}. \\ $$ Terms of Service Privacy Policy Contact:…