Menu Close

Category: Mensuration

Prove-that-the-radius-of-a-circle-passing-through-the-midpoints-of-the-sides-of-a-triangle-ABC-is-half-the-radius-of-a-circle-circum-scribed-about-the-triangle-

Question Number 19610 by ajfour last updated on 13/Aug/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle} \\ $$$$\mathrm{passing}\:\mathrm{through}\:\mathrm{the}\:\mathrm{midpoints} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{is} \\ $$$$\mathrm{half}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{circum}- \\ $$$$\mathrm{scribed}\:\mathrm{about}\:\mathrm{the}\:\mathrm{triangle}. \\ $$ Commented by ajfour last updated…

Given-in-an-isosceles-triangle-a-lateral-side-b-and-the-base-angle-Compute-the-distance-from-the-centre-of-the-inscribed-circle-to-the-centre-of-the-circumscribed-circle-

Question Number 19586 by ajfour last updated on 13/Aug/17 $$\mathrm{Given}\:\mathrm{in}\:\mathrm{an}\:\mathrm{isosceles}\:\mathrm{triangle}\:\mathrm{a} \\ $$$$\mathrm{lateral}\:\mathrm{side}\:\mathrm{b}\:\mathrm{and}\:\mathrm{the}\:\mathrm{base}\:\mathrm{angle}\:\alpha. \\ $$$$\mathrm{Compute}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{inscribed}\:\mathrm{circle}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circumscribed}\:\mathrm{circle}. \\ $$ Commented by Tinkutara last updated…

Parallel-tangents-to-a-circle-at-A-and-B-are-cut-in-the-points-C-and-D-by-a-tangent-to-the-circle-at-E-Prove-that-AD-BC-and-the-line-joining-the-middle-points-of-AE-and-BE-are-concurrent-

Question Number 19321 by ajfour last updated on 09/Aug/17 $$\mathrm{Parallel}\:\mathrm{tangents}\:\mathrm{to}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{at}\:\mathrm{A} \\ $$$$\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{cut}\:\mathrm{in}\:\mathrm{the}\:\mathrm{points}\:\mathrm{C}\:\mathrm{and}\:\mathrm{D} \\ $$$$\mathrm{by}\:\mathrm{a}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{at}\:\mathrm{E}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{AD},\:\mathrm{BC}\:\mathrm{and}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{joining}\:\mathrm{the}\:\mathrm{middle}\:\mathrm{points}\:\mathrm{of}\:\mathrm{AE} \\ $$$$\mathrm{and}\:\mathrm{BE}\:\mathrm{are}\:\mathrm{concurrent}. \\ $$ Commented by ajfour…

what-is-the-in-pounds-of-a-vertical-cylindrical-tank-that-is-6ft-in-dia-meter-and-15ft-in-height-if-it-weig-hs-20lbs-per-ft-of-height-

Question Number 18499 by chux last updated on 22/Jul/17 $$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{in}\:\mathrm{pounds}\:\mathrm{of}\:\mathrm{a}\:\mathrm{vertical} \\ $$$$\mathrm{cylindrical}\:\mathrm{tank}\:\mathrm{that}\:\mathrm{is}\:\mathrm{6ft}\:\mathrm{in}\:\mathrm{dia} \\ $$$$\mathrm{meter}\:\mathrm{and}\:\mathrm{15ft}\:\mathrm{in}\:\mathrm{height}.\mathrm{if}\:\mathrm{it}\:\mathrm{weig} \\ $$$$\mathrm{hs}\:\mathrm{20lbs}\:\mathrm{per}\:\mathrm{ft}\:\mathrm{of}\:\mathrm{height}. \\ $$ Commented by chux last updated on 23/Jul/17…

Question-18111

Question Number 18111 by ajfour last updated on 15/Jul/17 Commented by ajfour last updated on 15/Jul/17 $$\mathrm{Given}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{R}.\:\mathrm{A}\:\mathrm{chord} \\ $$$$\mathrm{AB}\:\mathrm{is}\:\mathrm{drawn}\:\mathrm{through}\:\mathrm{point}\:\mathrm{M}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{diameter}\:\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\boldsymbol{\phi}\:\mathrm{to}\:\mathrm{it}; \\ $$$$\:\mathrm{BM}:\mathrm{AM}=\mathrm{p}:\mathrm{q}\:.\:\mathrm{Through}\:\mathrm{point}\:\mathrm{B}\:\mathrm{is} \\ $$$$\mathrm{dropped}\:\:\mathrm{a}\:\mathrm{perpendicular}\:\mathrm{BC}\:\mathrm{to}\:\mathrm{the}…