Question Number 198023 by riyana last updated on 08/Oct/23 Answered by Rasheed.Sindhi last updated on 08/Oct/23 $$\frac{\:\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{4}}{\mathrm{7}}\:}{\:\mathrm{1}\frac{\mathrm{5}}{\mathrm{7}}+\frac{\mathrm{9}}{\mathrm{14}}\:}\centerdot\frac{\mathrm{11}}{\mathrm{26}} \\ $$$$\frac{\:\frac{\mathrm{21}−\mathrm{8}}{\mathrm{14}}\:}{\:\frac{\mathrm{12}}{\mathrm{7}}+\frac{\mathrm{9}}{\mathrm{14}}\:}\:\centerdot\:\frac{\mathrm{11}}{\mathrm{26}} \\ $$$$\frac{\:\frac{\mathrm{13}}{\mathrm{14}}\:}{\:\frac{\mathrm{24}+\mathrm{9}}{\mathrm{14}}\:}\:\centerdot\:\frac{\mathrm{11}}{\mathrm{26}} \\ $$$$\frac{\cancel{\overset{\mathrm{1}} {\mathrm{13}}}}{\cancel{\underset{\mathrm{3}} {\mathrm{33}}}}\:\centerdot\:\frac{\cancel{\overset{\mathrm{1}}…
Question Number 198013 by sonukgindia last updated on 07/Oct/23 Answered by witcher3 last updated on 10/Oct/23 $$\mathrm{nice}\:\mathrm{one}\:\:\mathrm{sir} \\ $$$$\mathrm{are}\:\mathrm{you}\:\mathrm{sur}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression} \\ $$ Terms of Service Privacy…
Question Number 197985 by mokys last updated on 07/Oct/23 $$\underset{{n}\rightarrow\infty} {{lim}}\:\left(\underset{\:{k}} {\overset{\:\:{n}} {\:}}\:\right)\:{p}^{{k}} \:{q}^{{n}−{k}} \\ $$ Commented by mr W last updated on 07/Oct/23 $${question}\:{in}\:{current}\:{form}\:{makes}\:{no}…
Question Number 197967 by Blackpanther last updated on 06/Oct/23 Answered by mr W last updated on 06/Oct/23 $${f}\left({x}\right)={a}\left({x}+\mathrm{1}\right)\left({x}−\mathrm{10}\right) \\ $$$$\frac{\mathrm{20}}{\mathrm{3}}={a}\left(\mathrm{0}+\mathrm{1}\right)\left(\mathrm{0}−\mathrm{10}\right) \\ $$$$\Rightarrow{a}=−\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${at}\:{x}=\frac{−\mathrm{1}+\mathrm{10}}{\mathrm{2}}=\frac{\mathrm{9}}{\mathrm{2}}: \\…
Question Number 197944 by liuxinnan last updated on 05/Oct/23 $${tan}\frac{\pi}{\mathrm{12}}=\frac{{sin}\alpha−{sin}\frac{\pi}{\mathrm{12}}}{{cos}\alpha+{cos}\frac{\pi}{\mathrm{12}}} \\ $$$$\alpha=? \\ $$ Answered by MM42 last updated on 05/Oct/23 $${sin}\frac{\pi}{\mathrm{12}}×{cos}\alpha+{sin}\frac{\pi}{\mathrm{12}}×{cos}\frac{\pi}{\mathrm{12}}={sin}\alpha×{cos}\frac{\pi}{\mathrm{12}}−{sin}\frac{\pi}{\mathrm{12}}×{cos}\frac{\pi}{\mathrm{12}} \\ $$$$\Rightarrow{sin}\left(\alpha−\frac{\pi}{\mathrm{12}}\right)=\mathrm{2}{sin}\frac{\pi}{\mathrm{12}}×{cos}\frac{\pi}{\mathrm{12}}={sin}\frac{\pi}{\mathrm{6}} \\…
Question Number 197916 by sonukgindia last updated on 04/Oct/23 Answered by MM42 last updated on 04/Oct/23 Commented by MM42 last updated on 05/Oct/23 $${let}\:\:{OB}={r}\:\:\&\:{CD}={x} \\…
Question Number 197917 by sonukgindia last updated on 04/Oct/23 Commented by Frix last updated on 04/Oct/23 $$\mathrm{I}\:\mathrm{have}\:\mathrm{more}\:\mathrm{joy}\:\mathrm{with}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{one},\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{one} \\ $$$$\mathrm{is}\:\mathrm{boring}. \\ $$ Answered by…
Question Number 197882 by CrispyXYZ last updated on 02/Oct/23 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{5}{t}^{\mathrm{2}} −\mathrm{8}{t}+\mathrm{5}}{\left(\mathrm{2}+\sqrt{\mathrm{3}}\right){t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{2}−\sqrt{\mathrm{3}}}\:\:\mathrm{where}\:\mathrm{2}−\sqrt{\mathrm{3}}<{t}<\mathrm{2}+\sqrt{\mathrm{3}}. \\ $$ Answered by mr W last updated on 03/Oct/23 $$\frac{\mathrm{5}{t}^{\mathrm{2}}…
Question Number 197865 by Blackpanther last updated on 01/Oct/23 Answered by mr W last updated on 02/Oct/23 Commented by mr W last updated on 02/Oct/23…
Question Number 197847 by CrispyXYZ last updated on 01/Oct/23 $$\mathrm{If}\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} <\mathrm{1},\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of} \\ $$$$\frac{{x}+{y}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}. \\ $$ Answered by Frix last updated on 01/Oct/23…