Menu Close

Category: None

Prove-that-x-3-y-6-20-has-no-positive-integer-solution-

Question Number 196650 by CrispyXYZ last updated on 28/Aug/23 $$\mathrm{Prove}\:\mathrm{that}\:{x}^{\mathrm{3}} ={y}^{\mathrm{6}} +\mathrm{20}\:\mathrm{has}\:\mathrm{no}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{solution}. \\ $$ Answered by AST last updated on 28/Aug/23 $${x}^{\mathrm{3}} \equiv\mathrm{1},−\mathrm{1}\:{or}\:\mathrm{0}\left({mod}\:\mathrm{9}\right) \\ $$$${when}\:\left({y},\mathrm{9}\right)=\mathrm{1};{y}^{\mathrm{6}}…

using-definition-of-limit-prove-lim-x-x-x-1-1-

Question Number 196540 by Matica last updated on 27/Aug/23 $$\:\:{using}\:{definition}\:{of}\:{limit},\:{prove}\: \\ $$$$\:\:\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{x}}{{x}+\mathrm{1}}\:=\:\mathrm{1} \\ $$ Answered by ERLY last updated on 27/Aug/23 $${tu}\:{appliques}\:{le}\:{monome}\:{de}\:{plus}\:{haut}\:{degre}\:{tu}\:{aura}\:{lim}\:{x}/{x}\:{ce}\:{qui}\:{donne}\:\mathrm{1}\:\:\:\:\:\:{Erly}\:{rolvinst} \\ $$…

i-1-6-f-i-i-1-6-f-6-1-i-i-1-6-j-1-i-f-i-j-i-1-6-j-1-i-f-6-1-j-6-1-i-i-1-6-j-1-i-k-1-j-f-i-j-k-i-1-6-j-1-i-k-1-j-f-

Question Number 196539 by qaz last updated on 27/Aug/23 $$\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}{f}\left({i}\right)=\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}{f}\left(\mathrm{6}+\mathrm{1}−{i}\right) \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}\underset{{j}=\mathrm{1}} {\overset{{i}} {\sum}}{f}\left({i},{j}\right)=\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}\underset{{j}=\mathrm{1}} {\overset{{i}} {\sum}}{f}\left(\mathrm{6}+\mathrm{1}−{j},\mathrm{6}+\mathrm{1}−{i}\right) \\…

Question-196595

Question Number 196595 by sonukgindia last updated on 27/Aug/23 Answered by Rasheed.Sindhi last updated on 28/Aug/23 $${f}\left({x}\right)=\frac{{ax}^{\mathrm{2}} +{bx}+{c}}{{dx}+{e}} \\ $$$${f}\left({x}\right)+{f}\left(−{x}\right)=\frac{{ax}^{\mathrm{2}} +{bx}+{c}}{{dx}+{e}}+\frac{{ax}^{\mathrm{2}} −{bx}+{c}}{−{dx}+{e}} \\ $$$$=\frac{\left({ax}^{\mathrm{2}} +{bx}+{c}\right)\left({e}−{dx}\right)+\left({ax}^{\mathrm{2}}…

Question-196576

Question Number 196576 by sonukgindia last updated on 27/Aug/23 Commented by Frix last updated on 27/Aug/23 $$\mathrm{Infinite}\:\mathrm{solutions}\:\mathrm{for}\:{x},\:{y}\:\in\mathbb{R} \\ $$$$\mathrm{No}\:\mathrm{solution}\:\mathrm{for}\:{x},\:{y}\:\in\mathbb{Z} \\ $$ Answered by AST last…

find-the-power-series-exponition-of-f-z-2z-1-z-2-3z-2-about-z-o-i-

Question Number 196565 by mokys last updated on 27/Aug/23 $${find}\:{the}\:{power}\:{series}\:{exponition}\:{of}\: \\ $$$${f}\left({z}\right)=\frac{\mathrm{2}{z}+\mathrm{1}}{{z}^{\mathrm{2}} −\mathrm{3}{z}+\mathrm{2}}\:\:{about}\:{z}_{{o}} \:=\:{i} \\ $$ Answered by aleks041103 last updated on 27/Aug/23 $$\frac{\mathrm{2}{z}+\mathrm{1}}{{z}^{\mathrm{2}} −\mathrm{3}{z}+\mathrm{2}}=\frac{\mathrm{2}{z}+\mathrm{1}}{\left({z}−\mathrm{2}\right)\left({z}−\mathrm{1}\right)}=\frac{{A}}{{z}−\mathrm{1}}+\frac{{B}}{{z}−\mathrm{2}}…

Question-196498

Question Number 196498 by Pedro2002 last updated on 26/Aug/23 Answered by Frix last updated on 26/Aug/23 $$\int\mathrm{e}^{−{x}^{\mathrm{2}} } {dx}=\frac{\sqrt{\pi}}{\mathrm{2}}\int\frac{\mathrm{2}}{\:\sqrt{\pi}}\mathrm{e}^{−{x}^{\mathrm{2}} } {dx}=\frac{\sqrt{\pi}}{\mathrm{2}}\mathrm{erf}\:{x}\:+{C} \\ $$ Terms of…