Question Number 223905 by TonyCWX last updated on 09/Aug/25 $${ABCD}\:{is}\:{a}\:{square} \\ $$$${EL}={LF} \\ $$$${FN}={ND} \\ $$$${O}\:{is}\:{the}\:{center}\:{of}\:{square} \\ $$$${Prove}\:{that}\:{points}\:{K},\:{L},\:{O},\:{N}\:{and}\:{C}\:{are}\:{concyclic} \\ $$ Commented by TonyCWX last updated…
Question Number 223881 by fantastic last updated on 08/Aug/25 Answered by som(math1967) last updated on 08/Aug/25 $${let}\:{CP}={x},\:{SP}={y} \\ $$$$\:\frac{\mathrm{15}{x}}{\mathrm{100}}=\frac{\mathrm{25}{y}}{\mathrm{100}} \\ $$$$\Rightarrow\:\frac{{x}}{{y}}=\frac{\mathrm{25}}{\mathrm{15}}=\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$\:\therefore{CP}:{SP}=\mathrm{5}:\mathrm{3} \\ $$$$\:{loss\%}=\frac{\mathrm{2}}{\mathrm{5}}×\mathrm{100}=\mathrm{40\%}…
Question Number 223889 by fantastic last updated on 08/Aug/25 Commented by fantastic last updated on 08/Aug/25 $${please}\:{help}\:{me}\:{with}\:{explanation} \\ $$ Commented by mr W last updated…
Question Number 223821 by wewji12 last updated on 06/Aug/25 $$\underset{\nu\rightarrow\alpha} {\mathrm{lim}}\:\frac{{J}_{−\nu−\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)+{e}^{\boldsymbol{{i}}\pi\nu} \centerdot{Y}_{\nu+\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)}{{Y}_{−\nu−\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)−{e}^{\boldsymbol{{i}}\pi\nu} \centerdot{J}_{\nu+\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)}=?? \\ $$$$\alpha\in\mathbb{Z}\: \\ $$ Terms of Service Privacy…
Question Number 223839 by wewji12 last updated on 06/Aug/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\:\left[\mathrm{Struve}\boldsymbol{\mathrm{H}}_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{\:^{\:^{\:} } } \left({z}\right)−\mathrm{Bessel}{Y}_{−\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)\right]\:\mathrm{d}{z}=?? \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 223801 by wewji12 last updated on 05/Aug/25 $$\mathrm{sorry}\:\:\mathrm{i}\:\mathrm{mean}\:{p}_{{h}} \in\mathbb{P}\:\left(\mathrm{prime}\:\mathrm{set}\right) \\ $$$$\underset{{h}\rightarrow\infty} {\mathrm{lim}}\:\frac{{p}_{{h}+\mathrm{1}} }{{p}_{{h}} }=?? \\ $$ Commented by Ghisom last updated on 05/Aug/25…
Question Number 223778 by wewji12 last updated on 04/Aug/25 $$\underset{{N}\rightarrow\infty} {\mathrm{lim}}\:\frac{{p}_{{N}+\mathrm{1}} }{{p}_{{N}} }=???\:\:,\:{p}_{\mathrm{1}} =\mathrm{2}\:,\:{p}_{\mathrm{2}} =\mathrm{3}\:,{p}_{\mathrm{3}} =\mathrm{5}\:…. \\ $$ Answered by mr W last updated on…
Question Number 223724 by fantastic last updated on 03/Aug/25 $$\: \\ $$$$\mathrm{A}\:\mathrm{rubber}\:\mathrm{ball}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{m}\: \\ $$$$\mathrm{radius}\:\mathrm{R}\:\mathrm{and}\:\mathrm{density}\rho\:\mathrm{is}\:\mathrm{released}\:\mathrm{from}\:\mathrm{a} \\ $$$$\mathrm{depth}\:\mathrm{h}\:\mathrm{under}\:\mathrm{a}\:\mathrm{fluid}\:\mathrm{of}\:\mathrm{density}\:\sigma\left(\sigma>\rho\right) \\ $$$$\left.\mathrm{i}\right) \\ $$$$\:\mathrm{How}\:\mathrm{high}\:\mathrm{will}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{bounce}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{the}\:\mathrm{fluid}\:?\mathrm{Ignore}\:\mathrm{any} \\ $$$$\mathrm{obstacles} \\…
Question Number 223720 by fantastic last updated on 03/Aug/25 $$ \\ $$$$\mathrm{One}\:\mathrm{end}\:\mathrm{of}\:\mathrm{a}\:\mathrm{string}\:\mathrm{is} \\ $$$$\mathrm{attached}\:\mathrm{to}\:\mathrm{a}\:\mathrm{solid}\:\mathrm{wall}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{other}\:\mathrm{end}\:\mathrm{is}\:\mathrm{hanging}\:\mathrm{from}\:\mathrm{a} \\ $$$$\mathrm{smooth}\:\mathrm{pulley}\:\mathrm{2}\:\mathrm{m}\:\mathrm{away}\: \\ $$$$\mathrm{fromthe}\:\mathrm{wall}.\:\mathrm{A}\:\mathrm{point}\:\mathrm{mass}\: \\ $$$$\mathrm{M}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{2}\:\mathrm{kg}\:\mathrm{is}\:\mathrm{attached}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{string}\:\mathrm{1}\:\mathrm{m}\:\mathrm{away}\:\mathrm{from}\:\mathrm{the} \\…
Question Number 223712 by fantastic last updated on 02/Aug/25 Commented by fantastic last updated on 02/Aug/25 $${a}\:{bulet}\:{of}\:{mass}\:{m}\:{and}\:{velocity}\:{v} \\ $$$${hits}\:{a}\:{wooden}\:{block}\:{of}\:{mass}\:{M}\:{which}\:{is}\:{tied}\:{with}\:{a}\: \\ $$$${rope}\:{of}\:{length}\:{l}.\left({the}\:{bullet}\:{sticks}\:{with}\:{the}\:{block}\right) \\ $$$${Find}\:{theta} \\ $$…