Menu Close

Category: None

x-y-36-xy-max-

Question Number 223538 by fantastic last updated on 28/Jul/25 $${x}+{y}=\mathrm{36} \\ $$$${xy}_{{max}} =?? \\ $$ Answered by Frix last updated on 28/Jul/25 $$\mathrm{Max}\:\mathrm{at}\:{x}={y}=\mathrm{18}\:\mathrm{because}\:\mathrm{out}\:\mathrm{of}\:\mathrm{all}\:\mathrm{rectangles} \\ $$$$\mathrm{with}\:\mathrm{given}\:\mathrm{circumference}\:\mathrm{the}\:\mathrm{square}\:\mathrm{has}\:\mathrm{the}…

Good-day-great-problem-solvers-Please-I-need-links-to-resources-helpful-for-preparations-for-Olympiad-mathematics-especially-books-and-video-recommendations-I-ll-be-grateful-to-get-our-responses-

Question Number 223412 by nECxx2 last updated on 24/Jul/25 $${Good}\:{day}\:{great}\:{problem}\:{solvers}. \\ $$$${Please}\:{I}\:{need}\:{links}\:{to}\:{resources}\:{helpful} \\ $$$${for}\:{preparations}\:{for}\:{Olympiad}\:{mathematics} \\ $$$${especially}\:{books}\:{and}\:{video}\:{recommendations}. \\ $$$${I}'{ll}\:{be}\:{grateful}\:{to}\:{get}\:{our}\:{responses}. \\ $$ Commented by fantastic last updated…

k-1-1-k-p-prime-1-p-1-1-2-1-3-1-4-1-2-1-3-1-5-

Question Number 223224 by wewji12 last updated on 18/Jul/25 $$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{k}}=\infty \\ $$$$\underset{\mathrm{p}\:\mathrm{prime}} {\sum}\:\frac{\mathrm{1}}{{p}}=\infty \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}….\right)−\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}+…\right)=?? \\ $$ Commented by Ghisom last updated on…

I-have-a-theory-this-may-not-be-true-and-I-cannot-prove-it-I-think-If-you-want-to-draw-a-closed-shape-in-x-th-dimention-the-minimum-number-of-vertex-you-will-need-is-x-1-like-if-you-want-to-

Question Number 223210 by fantastic last updated on 17/Jul/25 $${I}\:{have}\:{a}\:{theory}.\:{this}\:{may}\:{not}\:{be}\:{true}\:{and} \\ $$$${I}\:{cannot}\:{prove}\:{it}\:.\:{I}\:{think} \\ $$$${If}\:{you}\:{want}\:{to}\:{draw} \\ $$$$\:{a}\:{closed}\:{shape}\:{in}\:{x}^{{th}} \:{dimention} \\ $$$${the}\:{minimum}\:{number}\:{of} \\ $$$$\:{vertex}\:{you}\:{will}\:{need}\:{is}\:{x}+\mathrm{1} \\ $$$$ \\ $$$$\:{like}\:{if}\:{you}\:{want}\:{to}\:{draw}\:{a}\:{closed}\:{shape}…

Question-223085

Question Number 223085 by wewji12 last updated on 14/Jul/25 Answered by wewji12 last updated on 14/Jul/25 $$\mathrm{if}\:\mathrm{sequence}\:{A}_{{n}} \:\mathrm{is}\:\mathrm{monotonic}\:\mathrm{decrease}.\: \\ $$$$\bullet\:\:{A}_{{n}} \:\mathrm{satisfie}\:{A}_{\mathrm{0}} \geq{A}_{\mathrm{1}} \geq….\geq{A}_{{n}} \\ $$$$\bullet\:\:\underset{{n}\rightarrow\infty}…