Menu Close

Category: None

Question-195446

Question Number 195446 by sonukgindia last updated on 02/Aug/23 Answered by Frix last updated on 02/Aug/23 $$\sqrt{{a}+{b}\mathrm{i}}=\frac{\sqrt{{a}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}}{\:\sqrt{\mathrm{2}}}+\mathrm{sign}\:{b}\:\frac{\sqrt{−{a}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}}{\:\sqrt{\mathrm{2}}}\mathrm{i} \\ $$$$\sqrt{−\mathrm{110}+\mathrm{66i}}=\sqrt{\mathrm{11}\left(−\mathrm{5}+\sqrt{\mathrm{34}}\right)}+\mathrm{i}\sqrt{\mathrm{11}\left(\mathrm{5}+\sqrt{\mathrm{34}}\right)} \\ $$…

n-0-a-n-n-2-2-n-4-2-n-3-2-

Question Number 195436 by MrGHK last updated on 02/Aug/23 $$\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\boldsymbol{\mathrm{a}}\right)^{−\boldsymbol{\mathrm{n}}} }{\left(\boldsymbol{\mathrm{n}}+\mathrm{2}\right)^{\mathrm{2}} }\left(\boldsymbol{\psi}\left(\frac{\boldsymbol{\mathrm{n}}+\mathrm{4}}{\mathrm{2}}\right)−\boldsymbol{\psi}\left(\frac{{n}+\mathrm{3}}{\mathrm{2}}\right)\right)=??? \\ $$ Answered by witcher3 last updated on 02/Aug/23 $$\Psi\left(\mathrm{1}+\mathrm{x}\right)=−\gamma+\int_{\mathrm{0}} ^{\mathrm{1}}…

Question-195411

Question Number 195411 by sonukgindia last updated on 02/Aug/23 Answered by MM42 last updated on 02/Aug/23 $${lim}_{{x}\rightarrow\infty} \:\frac{\mathrm{2}×\mathrm{2}^{{x}} −\frac{\mathrm{1}}{\mathrm{3}}×\mathrm{9}^{{x}} +\mathrm{4}^{{x}} }{\mathrm{8}×\mathrm{4}^{{x}} +\mathrm{3}^{{x}} −\frac{\mathrm{1}}{\mathrm{4}}×\mathrm{4}^{{x}} } \\…

Question-195433

Question Number 195433 by sonukgindia last updated on 02/Aug/23 Answered by gatocomcirrose last updated on 02/Aug/23 $$\mathrm{2}\begin{vmatrix}{\mathrm{2}}&{−\mathrm{2}}&{\mathrm{1}}\\{\mathrm{x}}&{\mathrm{2}}&{−\mathrm{1}}\\{\mathrm{1}}&{−\mathrm{1}}&{−\mathrm{2}}\end{vmatrix}−\mathrm{3}\begin{vmatrix}{\mathrm{x}}&{−\mathrm{2}}&{\mathrm{1}}\\{\mathrm{2}}&{\mathrm{2}}&{−\mathrm{1}}\\{\mathrm{x}}&{−\mathrm{1}}&{−\mathrm{2}}\end{vmatrix}+ \\ $$$$+\mathrm{i}\begin{vmatrix}{\mathrm{x}}&{\mathrm{2}}&{\mathrm{1}}\\{\mathrm{2}}&{\mathrm{x}}&{−\mathrm{1}}\\{\mathrm{x}}&{\mathrm{1}}&{−\mathrm{2}}\end{vmatrix}+\begin{vmatrix}{\mathrm{x}}&{\mathrm{2}}&{−\mathrm{2}}\\{\mathrm{2}}&{\mathrm{x}}&{\mathrm{2}}\\{\mathrm{x}}&{\mathrm{1}}&{−\mathrm{1}}\end{vmatrix}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}\left[−\mathrm{10}−\mathrm{5x}\right]−\mathrm{3}\left[−\mathrm{5x}−\mathrm{10}\right]+\mathrm{i}\left[−\mathrm{3x}^{\mathrm{2}} −\mathrm{x}+\mathrm{10}\right]+\left[\mathrm{x}^{\mathrm{2}} +\mathrm{2x}\right]=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}}…

1-Prove-that-n-N-4-n-n-3-lt-n-1-3n-2-Solve-the-equations-in-Z-2-a-2x-3-xy-7-0-b-x-x-1-x-7-x-8-y-2-

Question Number 195342 by Matica last updated on 31/Jul/23 $$\:\:\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that}\:\:\forall{n}\:\in\:\mathbb{N}^{\ast} \:,\:\mathrm{4}^{{n}} \left({n}!\right)^{\mathrm{3}} \:<\:\left({n}+\mathrm{1}\right)^{\mathrm{3}{n}} \:. \\ $$$$\mathrm{2}.\:\mathrm{Solve}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{in}\:\mathbb{Z}^{\mathrm{2}} \:: \\ $$$$\:\:\:\:\:{a}./\:\:\mathrm{2}{x}^{\mathrm{3}} +{xy}−\mathrm{7}=\mathrm{0}\:, \\ $$$$\:\:\:\:\:{b}./\:\:{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{7}\right)\left({x}+\mathrm{8}\right)={y}^{\mathrm{2}} . \\ $$…