Menu Close

Category: None

show-that-for-any-natural-number-n-the-natural-number-3-5-n-3-5-n-is-divisible-by-2-n-

Question Number 195364 by Rodier97 last updated on 01/Aug/23 $$ \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{for}\:\mathrm{any}\:\mathrm{natural}\:\mathrm{number}\:{n},\: \\ $$$$\mathrm{the}\:\mathrm{natural}\:\mathrm{number}\:\left(\mathrm{3}−\sqrt{\mathrm{5}}\right)^{{n}} +\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)^{{n}} \:\mathrm{is}\:\mathrm{divisible} \\ $$$$\mathrm{by}\:\mathrm{2}^{{n}} . \\ $$ Answered by Frix last…

A-professor-said-0-0-because-0-0-a-0-a-N-Can-you-prove-

Question Number 195290 by Matica last updated on 29/Jul/23 $$\:{A}\:{professor}\:{said}\:\:\mathrm{0}\mid\mathrm{0}\:{because}\:\mathrm{0}=\:\mathrm{0}×{a}+\mathrm{0}\:\:\:,\:{a}\in\:\mathbb{N}.\:{Can}\:{you}\:{prove}? \\ $$ Answered by Frix last updated on 29/Jul/23 $${a}\mid{b}\:\Leftrightarrow\:\frac{{b}}{{a}}\in\mathbb{Z}\:\mathrm{but}\:\frac{\mathrm{0}}{\mathrm{0}}\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined}\:\Rightarrow\:\mathrm{0}\mid\mathrm{0}\:\mathrm{is}\:\mathrm{meaningless} \\ $$ Terms of Service…

Question-195206

Question Number 195206 by otchereabdullai@gmail.com last updated on 27/Jul/23 Answered by MM42 last updated on 27/Jul/23 $${p}\left({a}\right)={p}\left({b}\right)={p}\left({c}\right)=\frac{\mathrm{3}}{\mathrm{4}}\:;\:{probability}\:{of}\:{winning}\:{each}\:{race} \\ $$$$\left({i}\right)\:{p}\left({a}'\cap{b}\cap{c}'\right)=\frac{\mathrm{1}}{\mathrm{4}}×\frac{\mathrm{3}}{\mathrm{4}}×\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{3}}{\mathrm{64}} \\ $$$$\left({ii}\right)\:{p}\left({a}\cap{b}\cap{c}\right)=\frac{\mathrm{27}}{\mathrm{64}} \\ $$$$\left({iii}\right)\:{p}\left(\Sigma{abc}'\right)=\mathrm{3}×\frac{\mathrm{1}}{\mathrm{4}}×\frac{\mathrm{9}}{\mathrm{16}}=\frac{\mathrm{27}}{\mathrm{64}} \\ $$…

In-1-e-lnx-n-x-2-dx-using-an-enclosing-lnx-on-interval-1-e-show-that-n-N-0-In-1-

Question Number 195223 by Rodier97 last updated on 27/Jul/23 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{In}=\int_{\mathrm{1}} ^{\mathrm{e}} \frac{\left({lnx}\right)^{{n}} }{{x}^{\mathrm{2}} }\:{dx} \\ $$$$\:\:\:\:\:\mathrm{using}\:\mathrm{an}\:\mathrm{enclosing}\:{lnx}\:\mathrm{on}\:\mathrm{interval}\:\left[\mathrm{1};\mathrm{e}\right]\:\mathrm{show}\:\mathrm{that}\:\forall{n}\:\in\:\mathbb{N}^{\ast} ,\:\mathrm{0}\:\leq\mathrm{In}\leq\:\mathrm{1} \\ $$$$ \\ $$$$ \\ $$$$…

Question-195135

Question Number 195135 by 073 last updated on 25/Jul/23 Answered by som(math1967) last updated on 25/Jul/23 $$\:{x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }=\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{3}} −\mathrm{3}{x}.\frac{\mathrm{1}}{{x}}\left({x}+\frac{\mathrm{1}}{{x}}\right) \\ $$$$=\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{3}\sqrt{\mathrm{3}}=\mathrm{0} \\ $$$$\:\frac{{x}^{\mathrm{6}} +\mathrm{1}}{{x}^{\mathrm{3}}…

a-b-c-gt-0-amp-1-a-1-b-1-c-3-prove-that-a-b-2-c-2-b-a-2-c-2-c-a-2-b-2-3-2-a-b-c-ab-bc-ac-2-

Question Number 195118 by York12 last updated on 25/Jul/23 $${a},{b},{c}>\mathrm{0}\:\&\:\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}=\mathrm{3} \\ $$$${prove}\:{that} \\ $$$$\frac{{a}}{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }+\frac{{b}}{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} }+\frac{{c}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\geqslant\frac{\mathrm{3}}{\mathrm{2}}\left(\frac{{a}+{b}+{c}}{{ab}+{bc}+{ac}}\right)^{\mathrm{2}} \\ $$ Commented by York12…