Menu Close

Category: None

g-R-R-g-C-at-R-space-evauate-0-0-y-g-x-2-y-2-dxdy-when-0-pi-2-z-2-g-z-2-dz-pi-2-

Question Number 221435 by wewji12 last updated on 05/Jun/25 $$\mathrm{g};\mathbb{R}\rightarrow\mathbb{R}\:,\:\mathrm{g}\in\mathcal{C}^{\omega} \:\mathrm{at}\:\mathbb{R}\:\mathrm{space} \\ $$$$\:\mathrm{evauate}\: \\ $$$$−\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \:{y}\centerdot\mathrm{g}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\mathrm{d}{x}\mathrm{d}{y} \\ $$$$\mathrm{when}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{z}^{\mathrm{2}}…

if-i-1-n-x-r-i-j-0-n-a-j-x-n-i-show-that-i-1-n-tan-1-r-i-tan-1-a-1-a-3-a-5-a-0-a-2-a-4-

Question Number 221447 by Nicholas666 last updated on 05/Jun/25 $$ \\ $$$$\:\:\:\:\mathrm{if}\:\:\:\:\:\:\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}\:\left({x}\:+\:{r}_{{i}} \right)\:\equiv\:\underset{{j}=\mathrm{0}} {\overset{{n}} {\sum}}\:{a}_{{j}} {x}^{{n}−{i}} \: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{show}\:\mathrm{that}\:; \\ $$$$\:\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:\mathrm{tan}^{−\mathrm{1}}…

ex3-prove-f-n-n-2pii-S-f-z-z-n-1-dz-ex4-Let-z-0-be-any-point-interior-to-a-positively-oriented-simple-closed-contour-C-show-that-a-C-dz-z-z-0-2pii-b-

Question Number 221416 by wewji12 last updated on 04/Jun/25 $$\mathrm{ex3}. \\ $$$$\mathrm{prove} \\ $$$${f}^{\left({n}\right)} \left(\alpha\right)=\frac{{n}!}{\mathrm{2}\pi\boldsymbol{{i}}}\:\oint_{\:\partial{S}} \:\frac{{f}\left({z}\right)}{\left({z}−\alpha\right)^{{n}+\mathrm{1}} }\:\mathrm{d}{z} \\ $$$$\mathrm{ex4}. \\ $$$$\mathrm{Let}\:{z}_{\mathrm{0}} \:\mathrm{be}\:\mathrm{any}\:\mathrm{point}\:\mathrm{interior}\:\mathrm{to}\:\mathrm{a}\:\mathrm{positively} \\ $$$$\mathrm{oriented}\:\mathrm{simple}\:\mathrm{closed}\:\mathrm{contour}\:\mathcal{C} \\…

dz-1-pi-2-z-k-0-1-k-k-z-2-2k-2-pi-ln-1-2-z-J-z-1-pi-z-2-k-0-1-k-0-k-1-0-k-1-k-k-z-2-2k-

Question Number 221415 by wewji12 last updated on 04/Jun/25 $$\int\:\:\mathrm{d}{z}\:\left[−\frac{\mathrm{1}}{\pi}\left(\frac{\mathrm{2}}{{z}}\right)^{\nu} \centerdot\underset{{k}=\mathrm{0}} {\overset{\nu−\mathrm{1}} {\sum}}\:\frac{\Gamma\left(\nu−{k}\right)}{{k}!}\left(\frac{{z}}{\mathrm{2}}\right)^{\mathrm{2}{k}} +\frac{\mathrm{2}}{\pi}\mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}{z}\right){J}_{\nu} \left({z}\right)−\frac{\mathrm{1}}{\pi}\left(\frac{{z}}{\mathrm{2}}\right)^{\nu} \underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{k}} \left(\psi^{\left(\mathrm{0}\right)} \left({k}+\nu+\mathrm{1}\right)+\psi^{\left(\mathrm{0}\right)} \left({k}+\mathrm{1}\right)\right)}{{k}!\left({k}+\nu\right)!}\left(\frac{{z}}{\mathrm{2}}\right)^{\mathrm{2}{k}} \right] \\ $$ Answered…

0-J-1-t-Y-t-sin-t-dt-0-J-t-Y-1-t-sin-t-dt-J-t-is-th-Bessel-function-first-Kind-Y-t-is-th-Bessel-function-second-Kind-sin-t-is-sine-function-

Question Number 221391 by SdC355 last updated on 02/Jun/25 $$\int_{\mathrm{0}} ^{\:\infty} {J}_{\nu} ^{\left(\mathrm{1}\right)} \left({t}\right){Y}_{\nu} \left({t}\right)\mathrm{sin}\left({t}\right)\mathrm{d}{t}−\int_{\mathrm{0}} ^{\:\infty} {J}_{\nu} \left({t}\right){Y}_{\nu} ^{\left(\mathrm{1}\right)} \left({t}\right)\mathrm{sin}\left({t}\right)\mathrm{d}{t}=?? \\ $$$${J}_{\nu} \left({t}\right)\:\mathrm{is}\:\nu\:\mathrm{th}\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{first}\:\mathrm{Kind} \\ $$$${Y}_{\nu}…

k-1-2-n-1-1-n-2-kn-2-

Question Number 221387 by Nicholas666 last updated on 02/Jun/25 $$ \\ $$$$\:\:\:\:\:\:\:\underset{{k}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\left(\mathrm{2}\underset{{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+\:{kn}}\right)^{\mathrm{2}} \:=\:? \\ $$$$ \\ $$ Answered by MrGaster…