Menu Close

Category: None

Problem-3-11-Find-the-momentum-space-wave-function-p-t-for-a-particle-in-the-ground-state-of-the-harmoic-oscillator-What-is-the-probability-to-two-signficant-digits-that-a-measurement-of-on-a-

Question Number 221380 by SdC355 last updated on 02/Jun/25 $$ \\ $$$$\mathrm{Problem}\:\mathrm{3}.\mathrm{11}\:\mathrm{Find}\:\mathrm{the}\:\mathrm{momentum}\:\mathrm{space}\:\mathrm{wave}\: \\ $$$$\mathrm{function}\:\boldsymbol{\Psi}\left({p},{t}\right)\:\mathrm{for}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{in}\:\mathrm{the}\:\mathrm{ground}\:\mathrm{state}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{harmoic}\:\mathrm{oscillator}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability} \\ $$$$\left(\mathrm{to}\:\mathrm{two}\:\mathrm{signficant}\:\mathrm{digits}\right)\mathrm{that}\:\mathrm{a}\:\mathrm{measurement}\:\mathrm{of}\:\mathrm{on}\:\mathrm{a}\:\mathrm{particle}\: \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{state}\:\mathrm{would}\:\mathrm{yield}\:\mathrm{value}\:\mathrm{outside}\:\mathrm{the}\: \\ $$$$\mathrm{classical}\:\mathrm{range}\left(\mathrm{for}\:\mathrm{the}\:\mathrm{samenergy}\right) \\ $$$$\mathrm{Hint}\:\mathrm{Look}\:\mathrm{in}\:\mathrm{a}\:\mathrm{math}\:\mathrm{table}\:\mathrm{under}\:\mathrm{Normal}\:\mathrm{Distribution} \\…

k-0-n-n-k-1-

Question Number 221382 by MrGaster last updated on 02/Jun/25 $$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}^{−\mathrm{1}} \\ $$ Commented by mr W last updated on 05/Jun/25 $$=\frac{\mathrm{1}}{{n}!}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{k}!\left({n}−{k}\right)!…

Question-221373

Question Number 221373 by Nicholas666 last updated on 01/Jun/25 Commented by MathematicalUser2357 last updated on 09/Jun/25 $$\frac{\frac{\int_{\mathrm{0}} ^{\infty} \mathrm{cos}\:\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}}{x}^{\mathrm{3}} {dx}}{\int_{\mathrm{0}} ^{\infty} \mathrm{sin}\:\mathrm{16}{x}^{\mathrm{3}} {dx}}+\left(\int_{\mathrm{0}} ^{\infty} \mathrm{ln}\left(\frac{\left(\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}\sqrt{\mathrm{2}}}…

Given-real-numbers-a-b-c-gt-0-such-that-a-b-c-a-3-b-3-c-3-Prove-a-3-a-4-b-c-b-3-b-4-c-a-c-3-c-4-a-b-1-

Question Number 221352 by Nicholas666 last updated on 31/May/25 $$ \\ $$$$\:\:\:\:\mathrm{Given}\:\mathrm{real}\:\mathrm{numbers}\:{a},{b},{c}\:>\:\mathrm{0}\:, \\ $$$$\:\:\mathrm{such}\:\mathrm{that}\:{a}\:+\:{b}\:+\:{c}\:=\:{a}^{\mathrm{3}} \:+\:{b}^{\mathrm{3}} \:+\:{c}^{\mathrm{3}} \:, \\ $$$$\:\mathrm{Prove}\:;\:\frac{{a}^{\mathrm{3}} }{{a}^{\mathrm{4}} \:+\:{b}\:+\:{c}}\:+\:\frac{{b}^{\mathrm{3}} }{{b}^{\mathrm{4}} \:+\:{c}\:+\:{a}}\:+\:\frac{{c}^{\mathrm{3}} }{{c}^{\mathrm{4}} \:+\:\:{a}\:+\:{b}}\:\leqslant\:\mathrm{1}…

Let-a-b-c-be-there-real-numbers-Prove-that-if-sin-a-sin-b-sin-c-2-cos-a-cos-b-cos-c-5-and-sin-a-sin-b-sin-c-3-2-cos-a-pi-6-cos-b-pi-6-cos-c-pi-6-0-

Question Number 221354 by Nicholas666 last updated on 31/May/25 $$ \\ $$$$\:\:\mathrm{Let}\:{a},{b},{c}\:\mathrm{be}\:\mathrm{there}\:\mathrm{real}\:\mathrm{numbers}, \\ $$$$\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}; \\ $$$$\:\mathrm{sin}\:{a}\:+\:\mathrm{sin}\:{b}\:+\:\mathrm{sin}\:{c}\:\geqslant\:\mathrm{2}\:\:\Rightarrow\:\mathrm{cos}\:{a}\:+\:\mathrm{cos}\:{b}\:+\:\mathrm{cos}\:{c}\:\leqslant\:\sqrt{\mathrm{5}}\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{and}, \\ $$$$\:\mathrm{sin}\:{a}\:+\:\mathrm{sin}\:{b}\:+\:\mathrm{sin}\:{c}\:\geqslant\:\frac{\mathrm{3}}{\mathrm{2}}\:\Rightarrow\:\mathrm{cos}\left({a}−\pi/\mathrm{6}\right)\:+\:\mathrm{cos}\left({b}−\pi/\mathrm{6}\right)\:+\:\mathrm{cos}\left({c}−\pi/\mathrm{6}\right)\:\geqslant\:\mathrm{0}\:.\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$ Commented…

if-function-z-is-analytic-within-and-on-a-simple-closed-curve-C-and-z-0-is-a-point-within-C-using-cauchy-s-integral-formula-sin-z-2-cos-z-2-x-1-x-2-dz-

Question Number 221315 by klipto last updated on 30/May/25 $$\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{function}}\:\boldsymbol{\mathrm{z}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{analytic}}\:\boldsymbol{\mathrm{within}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{on}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{simple}} \\ $$$$\boldsymbol{\mathrm{closed}}\:\boldsymbol{\mathrm{curve}}\:\boldsymbol{\mathrm{C}},−\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{z}}_{\mathrm{0}} \:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{point}}\:\boldsymbol{\mathrm{within}}\:\boldsymbol{\mathrm{C}} \\ $$$$\boldsymbol{\mathrm{using}}\:\boldsymbol{\mathrm{cauchy}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{integral}}\:\boldsymbol{\mathrm{formula}} \\ $$$$\oint\frac{\boldsymbol{\mathrm{sin}\pi\mathrm{z}}^{\mathrm{2}} +\boldsymbol{\mathrm{cos}\pi\mathrm{z}}^{\mathrm{2}} }{\left(\boldsymbol{\mathrm{x}}−\mathrm{1}\right)\left(\boldsymbol{\mathrm{x}}−\mathrm{2}\right)}\boldsymbol{\mathrm{dz}} \\ $$ Commented by MathematicalUser2357 last…